File size: 4,854 Bytes
3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
"""GPT Blocks used for the GPT Model."""
from typing import Any, Dict, Optional, Tuple
import torch
import torch.nn as nn
from .attention import ATTN_CLASS_REGISTRY
from .ffn import FFN_CLASS_REGISTRY, build_ffn
from .norm import NORM_CLASS_REGISTRY
try:
from flash_attn.bert_padding import unpad_input, pad_input
except:
(unpad_input, pad_input) = (None, None)
attn_config_defaults: Dict = {
"attn_type": "multihead_attention",
"attn_pdrop": 0.0,
"attn_impl": "flash",
"qk_ln": True,
"qk_gn": False,
"clip_qkv": None,
"softmax_scale": None,
"prefix_lm": False,
"attn_uses_sequence_id": False,
"sliding_window_size": -1,
"alibi": False,
"alibi_bias_max": 8,
"rope": False,
"rope_theta": 10000,
"rope_impl": "dail",
"rope_dail_config": {
"type": "original",
"pos_idx_in_fp32": True,
"xpos_scale_base": 512,
},
"rope_hf_config": {"type": "no_scaling", "factor": 1.0},
}
class MPTBlock(nn.Module):
def __init__(
self,
d_model: int,
n_heads: int,
expansion_ratio: int,
attn_config: Optional[Dict] = None,
ffn_config: Optional[Dict] = None,
resid_pdrop: float = 0.0,
norm_type: str = "low_precision_layernorm",
fc_type: str = "torch",
device: Optional[str] = None,
no_bias: bool = False,
use_pad_tok_in_ffn: bool = True,
**kwargs: Any
):
if attn_config is None:
attn_config = attn_config_defaults
if ffn_config is None:
ffn_config = {"ffn_type": "mptmlp"}
del kwargs
super().__init__()
norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
assert isinstance(attn_config["attn_type"], str)
attn_class = ATTN_CLASS_REGISTRY[attn_config["attn_type"]]
args_to_exclude_in_attn_class = {
"attn_type",
"prefix_lm",
"alibi",
"attn_uses_sequence_id",
"alibi_bias_max",
"rope",
"rope_theta",
"rope_impl",
"rope_dail_config",
"rope_hf_config",
}
attn_config_subset_for_attn_class = {
k: v
for (k, v) in attn_config.items()
if k not in args_to_exclude_in_attn_class
}
self.norm_1 = norm_class(d_model, device=device)
self.attn = attn_class(
d_model=d_model,
n_heads=n_heads,
fc_type=fc_type,
device=device,
**attn_config_subset_for_attn_class,
bias=not no_bias
)
self.norm_2 = None
if not getattr(FFN_CLASS_REGISTRY[ffn_config["ffn_type"]], "_has_norm", False):
self.norm_2 = norm_class(d_model, device=device)
self.ffn = build_ffn(
d_model=d_model,
expansion_ratio=expansion_ratio,
device=device,
bias=not no_bias,
**ffn_config
)
self.resid_attn_dropout = nn.Dropout(resid_pdrop)
self.resid_ffn_dropout = nn.Dropout(resid_pdrop)
self.use_pad_tok_in_ffn = use_pad_tok_in_ffn
def forward(
self,
x: torch.Tensor,
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
attn_bias: Optional[torch.Tensor] = None,
rotary_emb_w_meta_info: Optional[Dict] = None,
attention_mask: Optional[torch.ByteTensor] = None,
is_causal: bool = True,
output_attentions: bool = False,
alibi_slopes: Optional[torch.Tensor] = None,
flash_attn_padding_info: Optional[dict[str, torch.Tensor]] = None,
) -> Tuple[
torch.Tensor,
Optional[torch.Tensor],
Optional[Tuple[torch.Tensor, torch.Tensor]],
]:
a = self.norm_1(x)
(b, attn_weights, past_key_value) = self.attn(
a,
past_key_value=past_key_value,
attn_bias=attn_bias,
rotary_emb_w_meta_info=rotary_emb_w_meta_info,
attention_mask=attention_mask,
is_causal=is_causal,
needs_weights=output_attentions,
alibi_slopes=alibi_slopes,
flash_attn_padding_info=flash_attn_padding_info,
)
x = x + self.resid_attn_dropout(b)
m = x
if self.norm_2 is not None:
m = self.norm_2(x)
(batch_size, seq_len) = m.size()[:2]
indices = None
if not self.use_pad_tok_in_ffn:
assert unpad_input is not None
(m, indices, _, _) = unpad_input(m, attention_mask)
n = self.ffn(m)
if not self.use_pad_tok_in_ffn:
assert pad_input is not None
n = pad_input(n, indices, batch_size, seq_len)
x = x + self.resid_ffn_dropout(n)
return (x, attn_weights, past_key_value)
|