sea-lion-7b-instruct / configuration_mpt.py
Xianbin
Update instruct model to latest weights
881b143
raw
history blame
18.2 kB
"""A HuggingFace-style model configuration."""
import warnings
from typing import Any, Dict, Optional, Union
from transformers import PretrainedConfig
from .attention import check_alibi_support, is_flash_v1_installed, is_flash_v2_installed
from .blocks import attn_config_defaults
from .fc import FC_CLASS_REGISTRY
from .norm import LPLayerNorm
from .ffn import FFN_CLASS_REGISTRY
from .warnings import VersionedDeprecationWarning
ffn_config_defaults: Dict = {"ffn_type": "mptmlp"}
init_config_defaults: Dict = {
"name": "kaiming_normal_",
"fan_mode": "fan_in",
"init_nonlinearity": "relu",
"init_div_is_residual": True,
"emb_init_std": None,
"emb_init_uniform_lim": None,
"init_std": None,
"init_gain": 0.0,
}
class MPTConfig(PretrainedConfig):
model_type = "mpt"
def __init__(
self,
d_model: int = 2048,
n_heads: int = 16,
n_layers: int = 24,
expansion_ratio: Union[int, float] = 4,
max_seq_len: int = 2048,
vocab_size: int = 50368,
resid_pdrop: float = 0.0,
emb_pdrop: float = 0.0,
learned_pos_emb: bool = True,
attn_config: Dict = attn_config_defaults,
ffn_config: Dict = ffn_config_defaults,
init_device: str = "cpu",
logit_scale: Optional[Union[float, str]] = None,
no_bias: bool = False,
embedding_fraction: float = 1.0,
norm_type: str = "low_precision_layernorm",
use_cache: bool = False,
init_config: Dict = init_config_defaults,
fc_type: str = "torch",
tie_word_embeddings: bool = True,
use_pad_tok_in_ffn: bool = True,
**kwargs: Any,
):
"""The MPT configuration class.
Args:
d_model (int): The size of the embedding dimension of the model.
n_heads (int): The number of attention heads.
n_layers (int): The number of layers in the model.
expansion_ratio (Union[int, float]): The ratio of the up/down scale in the ffn.
max_seq_len (int): The maximum sequence length of the model.
vocab_size (int): The size of the vocabulary.
resid_pdrop (float): The dropout probability applied to the attention output before combining with residual.
emb_pdrop (float): The dropout probability for the embedding layer.
learned_pos_emb (bool): Whether to use learned positional embeddings
attn_config (Dict): A dictionary used to configure the model's attention module:
attn_type (str): type of attention to use. Options: multihead_attention, multiquery_attention, grouped_query_attention
attn_pdrop (float): The dropout probability for the attention layers.
attn_impl (str): The attention implementation to use. One of 'torch', 'flash', or 'triton'.
qk_ln (bool): Whether to apply layer normalization to the queries and keys in the attention layer.
qk_gn (bool): Whether to apply group normalization to the queries and keys in the attention layer.
clip_qkv (Optional[float]): If not None, clip the queries, keys, and values in the attention layer to
this value.
softmax_scale (Optional[float]): If not None, scale the softmax in the attention layer by this value. If None,
use the default scale of ``1/sqrt(d_keys)``.
prefix_lm (Optional[bool]): Whether the model should operate as a Prefix LM. This requires passing an
extra `prefix_mask` argument which indicates which tokens belong to the prefix. Tokens in the prefix
can attend to one another bi-directionally. Tokens outside the prefix use causal attention.
attn_uses_sequence_id (Optional[bool]): Whether to restrict attention to tokens that have the same sequence_id.
When the model is in `train` mode, this requires passing an extra `sequence_id` argument which indicates
which sub-sequence each token belongs to.
Defaults to ``False`` meaning any provided `sequence_id` will be ignored.
sliding_window_size (int): Window size for sliding window local attention. Defaults to -1, which means no sliding window. Query at position i will only attend to keys between [i + seqlen_k - seqlen_q - window_size, i + seqlen_k - seqlen_q + window_size] inclusive. Only works for flash attention v2.3.0 or higher.
alibi (bool): Whether to use the alibi bias instead of position embeddings.
alibi_bias_max (int): The maximum value of the alibi bias.
rope (bool): Whether to use rotary positional embeddings.
rope_theta (int): The base frequency for rope.
rope_impl (str): The implementation of rope to use. One of 'hf' (to use the implementation from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py) or 'dail' (to use the implementation from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/layers/rotary.py).
rope_dail_config (Dict): The configuration for the dail implementation of rope.
type (str): The type of rotary position embedding to use. Options: 'original' (for https://arxiv.org/pdf/2104.09864.pdf), 'xpos' (for https://arxiv.org/pdf/2212.10554.pdf).
pos_idx_in_fp32 (bool): If True, the position indices [0, ..., seqlen - 1] are in fp32, otherwise they might be in lower precision. A consequence could be, for example, that bf16 rounds position 1995 to 2000, which leads to them having the same positional embedding.
xpos_scale_base (float): The scale base for XPos (if using XPos).
rope_hf_config (Dict): A dictionary used to configure rope's scaling behavior (when scaling beyond the training length).
type (str): Can be one of 'no_scaling', 'linear', or 'dynamic'. 'no_scaling' uses the default implementation for rotary embeddings, 'linear' uses linear scaling as proposed by the Reddit user /u/kaiokendev, and 'dynamic' uses Dynamic NTK scaling as proposed by the Reddit users /u/bloc97 and /u/emozilla.
factor (float): Scaling factor to use if using 'linear' or 'dynamic' as rope_scaling.type.
kv_n_heads (Optional[int]): For grouped_query_attention only, allow user to specify number of kv heads.
ffn_config (Dict): A dictionary used to configure the model's ffn module:
ffn_type (str): type of ffn to use. Options: mptmlp, mptglu, te_ln_mlp
init_device (str): The device to use for parameter initialization.
logit_scale (Optional[Union[float, str]]): If not None, scale the logits by this value.
no_bias (bool): Whether to use bias in all layers.
embedding_fraction (float): The fraction to scale the gradients of the embedding layer by.
norm_type (str): choose type of norm to use
use_cache (bool): Whether or not the model should return the last key/values attentions
init_config (Dict): A dictionary used to configure the model initialization:
init_config.name: The parameter initialization scheme to use. Options: 'default_', 'baseline_',
'kaiming_uniform_', 'kaiming_normal_', 'neox_init_', 'small_init_', 'xavier_uniform_', or
'xavier_normal_'. These mimic the parameter initialization methods in PyTorch.
init_div_is_residual (Union[int, float, str, bool]): Value to divide initial weights by if ``module._is_residual`` is True.
emb_init_std (Optional[float]): The standard deviation of the normal distribution used to initialize the embedding layer.
emb_init_uniform_lim (Optional[Union[Tuple[float, float], float]]): The lower and upper limits of the uniform distribution
used to initialize the embedding layer. Mutually exclusive with ``emb_init_std``.
init_std (float): The standard deviation of the normal distribution used to initialize the model,
if using the baseline_ parameter initialization scheme.
init_gain (float): The gain to use for parameter initialization with kaiming or xavier initialization schemes.
fan_mode (str): The fan mode to use for parameter initialization with kaiming initialization schemes.
init_nonlinearity (str): The nonlinearity to use for parameter initialization with kaiming initialization schemes.
---
See llmfoundry.models.utils.param_init_fns.py for info on other param init config options
fc_type (str): choose fc layer implementation. Options: torch and te. te layers support fp8 when using H100 GPUs.
tie_word_embeddings (bool): Whether to tie the input embedding and output layers.
use_pad_tok_in_ffn (bool): Whether to forward the pad token in the feedforward networks.
"""
self.d_model = d_model
self.n_heads = n_heads
self.n_layers = n_layers
self.expansion_ratio = expansion_ratio
self.max_seq_len = max_seq_len
self.vocab_size = vocab_size
self.resid_pdrop = resid_pdrop
self.emb_pdrop = emb_pdrop
self.learned_pos_emb = learned_pos_emb
self.attn_config = attn_config
self.ffn_config = ffn_config
self.init_device = init_device
self.logit_scale = logit_scale
self.no_bias = no_bias
self.embedding_fraction = embedding_fraction
self.norm_type = norm_type
self.use_cache = use_cache
self.init_config = init_config
self.fc_type = fc_type
self.use_pad_tok_in_ffn = use_pad_tok_in_ffn
if "name" in kwargs:
del kwargs["name"]
if "loss_fn" in kwargs:
del kwargs["loss_fn"]
if self.attn_config.get("alibi", False) or self.attn_config.get("rope", False):
self.learned_pos_emb = False
warnings.warn(
f"alibi or rope is turned on, setting `learned_pos_emb` to `False.`"
)
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
self._validate_config()
def _set_config_defaults(
self, config: Dict[str, Any], config_defaults: Dict[str, Any]
) -> Dict[str, Any]:
for k, v in config_defaults.items():
if k not in config:
config[k] = v
elif isinstance(v, dict):
config[k] = self._set_config_defaults(
config[k] if config[k] is not None else {}, v
)
return config
def _validate_config(self) -> None:
self.attn_config = self._set_config_defaults(
self.attn_config, attn_config_defaults
)
self.ffn_config = self._set_config_defaults(
self.ffn_config, ffn_config_defaults
)
self.init_config = self._set_config_defaults(
self.init_config, init_config_defaults
)
if self.d_model % self.n_heads != 0:
raise ValueError("d_model must be divisible by n_heads")
if any(
(
prob < 0 or prob > 1
for prob in [
self.attn_config["attn_pdrop"],
self.resid_pdrop,
self.emb_pdrop,
]
)
):
raise ValueError(
"self.attn_config['attn_pdrop'], resid_pdrop, emb_pdrop are probabilities and must be between 0 and 1"
)
if self.attn_config["attn_impl"] not in ["torch", "flash", "triton"]:
raise ValueError(f"Unknown attn_impl={self.attn_config['attn_impl']}")
if self.attn_config["prefix_lm"] and self.attn_config["attn_impl"] not in [
"torch",
"triton",
]:
raise NotImplementedError(
"prefix_lm only implemented with torch and triton attention."
)
if self.attn_config["attn_impl"] == "flash" and is_flash_v1_installed():
warnings.warn(
VersionedDeprecationWarning(
'Support for Flash Attention v1 is deprecated. Please upgrade to Flash Attention v2.4.2. To install Flash Attention v2.4.2, please run `pip install -e ".[gpu-flash2]"` from the root directory of the llm-foundry repository.',
remove_version="0.6.0",
)
)
if self.attn_config["attn_impl"] == "triton" and (
not self.attn_config["prefix_lm"]
):
warnings.warn(
UserWarning(
'If not using a Prefix Language Model, we recommend setting "attn_impl" to "flash" instead of "triton".'
)
)
if self.attn_config["alibi"] and (
not check_alibi_support(self.attn_config["attn_impl"])
):
raise NotImplementedError(
"alibi only implemented with torch, triton, and flash (v2.4.2 or higher) attention."
)
if self.attn_config["attn_uses_sequence_id"] and (
not (
self.attn_config["attn_impl"] in ["torch", "triton"]
or (
self.attn_config["attn_impl"] == "flash"
and is_flash_v2_installed(v2_version="v2.1.2")
)
)
):
raise NotImplementedError(
"attn_uses_sequence_id only implemented with torch, triton, and flash (v2.1.2 or higher) attention."
)
if self.attn_config["rope"] and self.attn_config["rope_impl"] not in [
"dail",
"hf",
]:
raise ValueError(
'If rope is being used then rope_impl should be either "dail", or "hf".'
)
if (
self.attn_config["rope"]
and self.attn_config["rope_impl"] == "hf"
and (
self.attn_config["rope_hf_config"]["type"]
not in ["no_scaling", "linear", "dynamic"]
)
):
raise ValueError(
'If using hf implementation of rope, the type should be one of "no_scaling", "linear" or "dynamic".'
)
if self.attn_config["rope"] and self.attn_config["rope_impl"] == "dail":
if self.attn_config["rope_dail_config"]["type"] not in ["original", "xpos"]:
raise ValueError(
'If using the dail implementation of rope, the type should be one of "original" or "xpos".'
)
if not is_flash_v2_installed(v2_version="2.0.1"):
raise ImportError(
"If using the dail implementation of rope, the flash_attn library v2.0.1 or higher must be installed. Please check the instructions at https://github.com/mosaicml/llm-foundry/blob/main/TUTORIAL.md#what-kinds-of-positional-embeddings-does-llm-foundry-support"
)
if self.attn_config["sliding_window_size"] != -1 and (
not (
self.attn_config["attn_impl"] == "flash"
and is_flash_v2_installed(v2_version="v2.3.0")
)
):
raise NotImplementedError(
"sliding window only implemented with flash attention v2.3.0 or higher."
)
if self.embedding_fraction > 1 or self.embedding_fraction <= 0:
raise ValueError(
"model.embedding_fraction must be between 0 (exclusive) and 1 (inclusive)!"
)
if isinstance(self.logit_scale, str) and self.logit_scale != "inv_sqrt_d_model":
raise ValueError(
f"self.logit_scale={self.logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'."
)
if self.init_config.get("name", None) is None:
raise ValueError(
f"self.init_config={self.init_config!r} 'name' needs to be set."
)
if not (
self.learned_pos_emb
or self.attn_config["alibi"]
or self.attn_config["rope"]
):
warnings.warn(
f"Positional information not being provided to the model using either learned_pos_emb or alibi or rope."
)
if self.fc_type == "te" or self.ffn_config["ffn_type"] == "te_ln_mlp":
try:
import transformer_engine.pytorch as te
del te
except:
raise ImportError(
"TransformerEngine import fail. `fc_type: te` requires TransformerEngine be installed. "
+ "The required version of transformer_engine also requires FlashAttention v1.0.6 is installed:\n"
+ "pip install flash-attn==1.0.6 --no-build-isolation \n"
+ "pip install git+https://github.com/NVIDIA/TransformerEngine.git@144e4888b2cdd60bd52e706d5b7a79cb9c1a7156"
)
if self.ffn_config["ffn_type"] == "mptgeglu":
raise ValueError(
'API CHANGE: `ffn_type=="mptgeglu"` changed to `ffn_type=="mptglu"`. '
+ "See [#829](https://github.com/mosaicml/llm-foundry/pull/829) for details."
)
elif self.ffn_config["ffn_type"] in ["mptmlp", "mptglu"]:
self.ffn_config["fc_type"] = self.fc_type
elif self.ffn_config["ffn_type"] == "te_ln_mlp":
self.ffn_config["bias"] = not self.no_bias
if "ffn_act_fn" in self.ffn_config.keys():
raise ValueError(
f"Transformer Engine block does not support custom activation functions."
)
if not self.use_pad_tok_in_ffn:
try:
from flash_attn.bert_padding import unpad_input, pad_input
except:
raise ImportError(
"In order to set `use_pad_tok_in_ffn=False`, please install flash-attn==1.0.9 or flash-attn==2.3.6"
)