File size: 2,102 Bytes
c3c7f32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
base_model: google/mt5-small
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mT5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mT5
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 7.3770
- Rouge1: 7.972
- Rouge2: 1.6667
- Rougel: 7.972
- Rougelsum: 6.4336
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| 22.553 | 1.0 | 7 | 12.1593 | 7.972 | 1.6667 | 7.972 | 6.4336 |
| 20.0448 | 2.0 | 14 | 8.1176 | 7.972 | 1.6667 | 7.972 | 6.4336 |
| 17.5194 | 3.0 | 21 | 7.7753 | 7.972 | 1.6667 | 7.972 | 6.4336 |
| 18.608 | 4.0 | 28 | 7.6868 | 7.972 | 1.6667 | 7.972 | 6.4336 |
| 15.8009 | 5.0 | 35 | 7.4422 | 7.972 | 1.6667 | 7.972 | 6.4336 |
| 16.2277 | 6.0 | 42 | 7.8053 | 7.972 | 1.6667 | 7.972 | 6.4336 |
| 16.2949 | 7.0 | 49 | 7.8086 | 7.972 | 1.6667 | 7.972 | 6.4336 |
| 15.1347 | 8.0 | 56 | 7.3770 | 7.972 | 1.6667 | 7.972 | 6.4336 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|