File size: 14,485 Bytes
ddf288e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from fast_pytorch_kmeans import KMeans
from torch import einsum
import torch.distributed as dist
from einops import rearrange
def get_timestep_embedding(timesteps, embedding_dim):
"""
This matches the implementation in Denoising Diffusion Probabilistic Models:
From Fairseq.
Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly
from the description in Section 3.5 of "Attention Is All You Need".
"""
assert len(timesteps.shape) == 1
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
emb = emb.to(device=timesteps.device)
emb = timesteps.float()[:, None] * emb[None, :]
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
if embedding_dim % 2 == 1: # zero pad
emb = torch.nn.functional.pad(emb, (0,1,0,0))
return emb
def nonlinearity(x):
# swish
return x*torch.sigmoid(x)
def Normalize(in_channels):
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
class Upsample(nn.Module):
def __init__(self, in_channels, with_conv):
super().__init__()
self.with_conv = with_conv
if self.with_conv:
self.conv = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=3,
stride=1,
padding=1)
def forward(self, x):
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
if self.with_conv:
x = self.conv(x)
return x
class Downsample(nn.Module):
def __init__(self, in_channels, with_conv):
super().__init__()
self.with_conv = with_conv
if self.with_conv:
# no asymmetric padding in torch conv, must do it ourselves
self.conv = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=3,
stride=2,
padding=0)
def forward(self, x):
if self.with_conv:
pad = (0,1,0,1)
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
x = self.conv(x)
else:
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
return x
class ResnetBlock(nn.Module):
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.use_conv_shortcut = conv_shortcut
self.norm1 = Normalize(in_channels)
self.conv1 = torch.nn.Conv2d(in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1)
self.norm2 = Normalize(out_channels)
self.dropout = torch.nn.Dropout(dropout)
self.conv2 = torch.nn.Conv2d(out_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
self.conv_shortcut = torch.nn.Conv2d(in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1)
else:
self.nin_shortcut = torch.nn.Conv2d(in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0)
def forward(self, x):
h = x
h = self.norm1(h)
h = nonlinearity(h)
h = self.conv1(h)
h = self.norm2(h)
h = nonlinearity(h)
h = self.dropout(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
x = self.conv_shortcut(x)
else:
x = self.nin_shortcut(x)
return x+h
class AttnBlock(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.in_channels = in_channels
self.norm = Normalize(in_channels)
self.q = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.k = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.v = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.proj_out = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
def forward(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# compute attention
b,c,h,w = q.shape
q = q.reshape(b,c,h*w)
q = q.permute(0,2,1) # b,hw,c
k = k.reshape(b,c,h*w) # b,c,hw
w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
w_ = w_ * (int(c)**(-0.5))
w_ = torch.nn.functional.softmax(w_, dim=2)
# attend to values
v = v.reshape(b,c,h*w)
w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
h_ = h_.reshape(b,c,h,w)
h_ = self.proj_out(h_)
return x+h_
class Swish(nn.Module):
def forward(self, x):
return x * torch.sigmoid(x)
class Encoder(nn.Module):
"""
Encoder of VQ-GAN to map input batch of images to latent space.
Dimension Transformations:
3x256x256 --Conv2d--> 32x256x256
for loop:
--ResBlock--> 64x256x256 --DownBlock--> 64x128x128
--ResBlock--> 128x128x128 --DownBlock--> 128x64x64
--ResBlock--> 256x64x64 --DownBlock--> 256x32x32
--ResBlock--> 512x32x32
--ResBlock--> 512x32x32
--NonLocalBlock--> 512x32x32
--ResBlock--> 512x32x32
--GroupNorm-->
--Swish-->
--Conv2d-> 256x32x32
"""
def __init__(self, in_channels=3, channels=[128, 128, 128, 256, 512, 512], attn_resolutions=[32], resolution=512, dropout=0.0, num_res_blocks=2, z_channels=256, **kwargs):
super(Encoder, self).__init__()
layers = [nn.Conv2d(in_channels, channels[0], 3, 1, 1)]
for i in range(len(channels) - 1):
in_channels = channels[i]
out_channels = channels[i + 1]
for j in range(num_res_blocks):
layers.append(ResnetBlock(in_channels=in_channels, out_channels=out_channels, dropout=0.0))
in_channels = out_channels
if resolution in attn_resolutions:
layers.append(AttnBlock(in_channels))
if i < len(channels) - 2:
layers.append(Downsample(channels[i + 1], with_conv=True))
resolution //= 2
layers.append(ResnetBlock(in_channels=channels[-1], out_channels=channels[-1], dropout=0.0))
layers.append(AttnBlock(channels[-1]))
layers.append(ResnetBlock(in_channels=channels[-1], out_channels=channels[-1], dropout=0.0))
layers.append(Normalize(channels[-1]))
layers.append(Swish())
layers.append(nn.Conv2d(channels[-1], z_channels, 3, 1, 1))
self.model = nn.Sequential(*layers)
def forward(self, x):
return self.model(x)
class Decoder(nn.Module):
def __init__(self, out_channels=3, channels=[128, 128, 128, 256, 512, 512], attn_resolutions=[32], resolution=512, dropout=0.0, num_res_blocks=2, z_channels=256, **kwargs):
super(Decoder, self).__init__()
ch_mult = channels[1:]
num_resolutions = len(ch_mult)
block_in = ch_mult[num_resolutions - 1]
curr_res = resolution// 2 ** (num_resolutions - 1)
layers = [nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1),
ResnetBlock(in_channels=block_in, out_channels=block_in, dropout=0.0),
AttnBlock(block_in),
ResnetBlock(in_channels=block_in, out_channels=block_in, dropout=0.0)
]
for i in reversed(range(num_resolutions)):
block_out = ch_mult[i]
for i_block in range(num_res_blocks+1):
layers.append(ResnetBlock(in_channels=block_in, out_channels=block_out, dropout=0.0))
block_in = block_out
if curr_res in attn_resolutions:
layers.append(AttnBlock(block_in))
if i > 0:
layers.append(Upsample(block_in, with_conv=True))
curr_res = curr_res * 2
layers.append(Normalize(block_in))
layers.append(Swish())
layers.append(nn.Conv2d(block_in, out_channels, kernel_size=3, stride=1, padding=1))
self.model = nn.Sequential(*layers)
def forward(self, x):
return self.model(x)
class Codebook(nn.Module):
"""
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly
avoids costly matrix multiplications and allows for post-hoc remapping of indices.
"""
def __init__(self, codebook_size, codebook_dim, beta, init_steps=2000, reservoir_size=2e5):
super().__init__()
self.codebook_size = codebook_size
self.codebook_dim = codebook_dim
self.beta = beta
self.embedding = nn.Embedding(self.codebook_size, self.codebook_dim)
self.embedding.weight.data.uniform_(-1.0 / self.codebook_size, 1.0 / self.codebook_size)
self.q_start_collect, self.q_init, self.q_re_end, self.q_re_step = init_steps, init_steps * 3, init_steps * 30, init_steps // 2
self.q_counter = 0
self.reservoir_size = int(reservoir_size)
self.reservoir = None
def forward(self, z):
z = rearrange(z, 'b c h w -> b h w c').contiguous()
batch_size = z.size(0)
z_flattened = z.view(-1, self.codebook_dim)
if self.training:
self.q_counter += 1
# x_flat = x.permute(0, 2, 3, 1).reshape(-1, z.shape(1))
if self.q_counter > self.q_start_collect:
z_new = z_flattened.clone().detach().view(batch_size, -1, self.codebook_dim)
z_new = z_new[:, torch.randperm(z_new.size(1))][:, :10].reshape(-1, self.codebook_dim)
self.reservoir = z_new if self.reservoir is None else torch.cat([self.reservoir, z_new], dim=0)
self.reservoir = self.reservoir[torch.randperm(self.reservoir.size(0))[:self.reservoir_size]].detach()
if self.q_counter < self.q_init:
z_q = rearrange(z, 'b h w c -> b c h w').contiguous()
return z_q, z_q.new_tensor(0), None # z_q, loss, min_encoding_indices
else:
# if self.q_counter < self.q_init + self.q_re_end:
if self.q_init <= self.q_counter < self.q_re_end:
if (self.q_counter - self.q_init) % self.q_re_step == 0 or self.q_counter == self.q_init + self.q_re_end - 1:
kmeans = KMeans(n_clusters=self.codebook_size)
world_size = dist.get_world_size()
print("Updating codebook from reservoir.")
if world_size > 1:
global_reservoir = [torch.zeros_like(self.reservoir) for _ in range(world_size)]
dist.all_gather(global_reservoir, self.reservoir.clone())
global_reservoir = torch.cat(global_reservoir, dim=0)
else:
global_reservoir = self.reservoir
kmeans.fit_predict(global_reservoir) # reservoir is 20k encoded latents
self.embedding.weight.data = kmeans.centroids.detach()
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
torch.sum(self.embedding.weight**2, dim=1) - 2 * \
torch.einsum('bd,dn->bn', z_flattened, rearrange(self.embedding.weight, 'n d -> d n'))
min_encoding_indices = torch.argmin(d, dim=1)
z_q = self.embedding(min_encoding_indices).view(z.shape)
# compute loss for embedding
loss = torch.mean((z_q.detach()-z)**2) + self.beta * torch.mean((z_q - z.detach()) ** 2)
# preserve gradients
z_q = z + (z_q - z).detach()
# reshape back to match original input shape
z_q = rearrange(z_q, 'b h w c -> b c h w').contiguous()
return z_q, loss, min_encoding_indices
def get_codebook_entry(self, indices, shape):
# get quantized latent vectors
z_q = self.embedding(indices)
if shape is not None:
z_q = z_q.view(shape)
# reshape back to match original input shape
z_q = z_q.permute(0, 3, 1, 2).contiguous()
return z_q
if __name__ == '__main__':
enc = Encoder()
dec = Decoder()
print(sum([p.numel() for p in enc.parameters()]))
print(sum([p.numel() for p in dec.parameters()]))
x = torch.randn(1, 3, 512, 512)
res = enc(x)
print(res.shape)
res = dec(res)
print(res.shape)
|