--- license: bigscience-bloom-rail-1.0 base_model: bigscience/bloomz-560m tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: BLOOM-Meta4Types-ft-ES results: [] --- # BLOOM-Meta4Types-ft-ES This model is a fine-tuned version of [bigscience/bloomz-560m](https://huggingface.co/bigscience/bloomz-560m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6658 - Roc Auc: 0.6521 - Hamming Loss: 0.2255 - F1 Score: 0.5792 - Accuracy: 0.5098 - Precision: 0.5611 - Recall: 0.6085 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Roc Auc | Hamming Loss | F1 Score | Accuracy | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------------:|:--------:|:--------:|:---------:|:------:| | No log | 1.0 | 204 | 1.4085 | 0.5227 | 0.3775 | 0.0874 | 0.0490 | 0.9333 | 0.0500 | | No log | 2.0 | 408 | 1.3092 | 0.5569 | 0.4036 | 0.3425 | 0.2353 | 0.7464 | 0.4360 | | 1.9965 | 3.0 | 612 | 1.2200 | 0.5497 | 0.2304 | 0.4634 | 0.4510 | 0.7327 | 0.5574 | | 1.9965 | 4.0 | 816 | 1.4996 | 0.5843 | 0.3235 | 0.3965 | 0.3922 | 0.4177 | 0.4519 | | 0.6193 | 5.0 | 1020 | 1.0759 | 0.5823 | 0.2271 | 0.4488 | 0.5098 | 0.6180 | 0.4070 | | 0.6193 | 6.0 | 1224 | 1.8243 | 0.5808 | 0.2614 | 0.4892 | 0.3775 | 0.5688 | 0.5824 | | 0.6193 | 7.0 | 1428 | 1.6658 | 0.6521 | 0.2255 | 0.5792 | 0.5098 | 0.5611 | 0.6085 | | 0.202 | 8.0 | 1632 | 2.0491 | 0.5856 | 0.2075 | 0.4864 | 0.5441 | 0.5844 | 0.4447 | | 0.202 | 9.0 | 1836 | 2.2174 | 0.6241 | 0.1944 | 0.5733 | 0.5588 | 0.6183 | 0.5504 | | 0.0338 | 10.0 | 2040 | 2.1754 | 0.6265 | 0.1993 | 0.5693 | 0.5539 | 0.6197 | 0.5399 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1