File size: 2,078 Bytes
2128e47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: mit
base_model: facebook/bart-large-cnn
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-large-cnn-reddit-summary-v2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-large-cnn-reddit-summary-v2
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9771
- Rouge1: 0.4603
- Rouge2: 0.1837
- Rougel: 0.2955
- Rougelsum: 0.3192
- Gen Len: 95.826
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- gradient_accumulation_steps: 3
- total_train_batch_size: 9
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 1.904 | 1.0 | 1125 | 1.8620 | 0.4543 | 0.1821 | 0.2935 | 0.3157 | 91.077 |
| 1.5708 | 2.0 | 2251 | 1.8475 | 0.4557 | 0.183 | 0.2965 | 0.3187 | 90.2955 |
| 1.3314 | 3.0 | 3377 | 1.8665 | 0.4617 | 0.1871 | 0.2988 | 0.3213 | 94.3165 |
| 1.1664 | 4.0 | 4502 | 1.9205 | 0.4609 | 0.1849 | 0.2952 | 0.3184 | 98.4065 |
| 1.0452 | 5.0 | 5625 | 1.9771 | 0.4603 | 0.1837 | 0.2955 | 0.3192 | 95.826 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
|