File size: 9,305 Bytes
7104f0c
 
 
 
 
7d097bf
7104f0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
tags:
- generated_from_trainer
datasets:
- funsd
base_model: microsoft/layoutlm-base-uncased
model-index:
- name: layoutlm-funsd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlm-funsd

This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7960
- Answer: {'precision': 0.7169603524229075, 'recall': 0.8046971569839307, 'f1': 0.7582993593476993, 'number': 809}
- Header: {'precision': 0.36619718309859156, 'recall': 0.4369747899159664, 'f1': 0.39846743295019166, 'number': 119}
- Question: {'precision': 0.7883408071748879, 'recall': 0.8253521126760563, 'f1': 0.8064220183486238, 'number': 1065}
- Overall Precision: 0.7307
- Overall Recall: 0.7938
- Overall F1: 0.7609
- Overall Accuracy: 0.8081

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 6
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Answer                                                                                                      | Header                                                                                                      | Question                                                                                                    | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 1.6386        | 1.0   | 25   | 1.2949          | {'precision': 0.08352668213457076, 'recall': 0.08899876390605686, 'f1': 0.08617594254937162, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                 | {'precision': 0.36874571624400276, 'recall': 0.5051643192488263, 'f1': 0.42630744849445323, 'number': 1065} | 0.2628            | 0.3061         | 0.2828     | 0.5116           |
| 1.0433        | 2.0   | 50   | 0.8005          | {'precision': 0.5965447154471545, 'recall': 0.7255871446229913, 'f1': 0.6547685443390964, 'number': 809}    | {'precision': 0.1111111111111111, 'recall': 0.058823529411764705, 'f1': 0.07692307692307691, 'number': 119} | {'precision': 0.6574487065120428, 'recall': 0.692018779342723, 'f1': 0.6742909423604757, 'number': 1065}    | 0.6139            | 0.6678         | 0.6398     | 0.7293           |
| 0.6891        | 3.0   | 75   | 0.6695          | {'precision': 0.6335650446871897, 'recall': 0.788627935723115, 'f1': 0.7026431718061674, 'number': 809}     | {'precision': 0.3246753246753247, 'recall': 0.21008403361344538, 'f1': 0.25510204081632654, 'number': 119}  | {'precision': 0.7085862966175195, 'recall': 0.7671361502347418, 'f1': 0.7366997294860236, 'number': 1065}   | 0.6616            | 0.7426         | 0.6998     | 0.7752           |
| 0.532         | 4.0   | 100  | 0.6270          | {'precision': 0.6573787409700722, 'recall': 0.7873918417799752, 'f1': 0.7165354330708661, 'number': 809}    | {'precision': 0.2361111111111111, 'recall': 0.2857142857142857, 'f1': 0.25855513307984795, 'number': 119}   | {'precision': 0.7153284671532847, 'recall': 0.828169014084507, 'f1': 0.7676240208877285, 'number': 1065}    | 0.6620            | 0.7792         | 0.7158     | 0.7961           |
| 0.4184        | 5.0   | 125  | 0.6174          | {'precision': 0.6837160751565762, 'recall': 0.8096415327564895, 'f1': 0.7413695529145445, 'number': 809}    | {'precision': 0.3063063063063063, 'recall': 0.2857142857142857, 'f1': 0.2956521739130435, 'number': 119}    | {'precision': 0.7734657039711191, 'recall': 0.8046948356807512, 'f1': 0.7887712839392544, 'number': 1065}   | 0.7102            | 0.7757         | 0.7415     | 0.8025           |
| 0.3264        | 6.0   | 150  | 0.6493          | {'precision': 0.6905537459283387, 'recall': 0.7861557478368356, 'f1': 0.7352601156069365, 'number': 809}    | {'precision': 0.310126582278481, 'recall': 0.4117647058823529, 'f1': 0.35379061371841153, 'number': 119}    | {'precision': 0.7713523131672598, 'recall': 0.8140845070422535, 'f1': 0.7921425308359983, 'number': 1065}   | 0.7045            | 0.7787         | 0.7398     | 0.8008           |
| 0.2661        | 7.0   | 175  | 0.6587          | {'precision': 0.6857440166493236, 'recall': 0.8145859085290482, 'f1': 0.7446327683615819, 'number': 809}    | {'precision': 0.32575757575757575, 'recall': 0.36134453781512604, 'f1': 0.3426294820717131, 'number': 119}  | {'precision': 0.7720970537261699, 'recall': 0.8366197183098592, 'f1': 0.8030644434429923, 'number': 1065}   | 0.7089            | 0.7993         | 0.7514     | 0.8038           |
| 0.2246        | 8.0   | 200  | 0.7115          | {'precision': 0.7111356119073869, 'recall': 0.7972805933250927, 'f1': 0.7517482517482517, 'number': 809}    | {'precision': 0.2983425414364641, 'recall': 0.453781512605042, 'f1': 0.36, 'number': 119}                   | {'precision': 0.7891402714932126, 'recall': 0.8187793427230047, 'f1': 0.8036866359447005, 'number': 1065}   | 0.7164            | 0.7883         | 0.7506     | 0.8074           |
| 0.1928        | 9.0   | 225  | 0.7130          | {'precision': 0.7094668117519043, 'recall': 0.8059332509270705, 'f1': 0.7546296296296295, 'number': 809}    | {'precision': 0.3178294573643411, 'recall': 0.3445378151260504, 'f1': 0.33064516129032256, 'number': 119}   | {'precision': 0.7908025247971145, 'recall': 0.8234741784037559, 'f1': 0.8068077276908925, 'number': 1065}   | 0.7279            | 0.7878         | 0.7566     | 0.8042           |
| 0.1598        | 10.0  | 250  | 0.7375          | {'precision': 0.7242937853107345, 'recall': 0.792336217552534, 'f1': 0.756788665879575, 'number': 809}      | {'precision': 0.375, 'recall': 0.42857142857142855, 'f1': 0.39999999999999997, 'number': 119}               | {'precision': 0.788858939802336, 'recall': 0.8244131455399061, 'f1': 0.8062442607897153, 'number': 1065}    | 0.7357            | 0.7878         | 0.7608     | 0.8099           |
| 0.1444        | 11.0  | 275  | 0.7719          | {'precision': 0.7027896995708155, 'recall': 0.8096415327564895, 'f1': 0.7524411257897761, 'number': 809}    | {'precision': 0.34814814814814815, 'recall': 0.3949579831932773, 'f1': 0.3700787401574803, 'number': 119}   | {'precision': 0.7825311942959001, 'recall': 0.8244131455399061, 'f1': 0.8029263831732967, 'number': 1065}   | 0.7218            | 0.7928         | 0.7556     | 0.8008           |
| 0.1251        | 12.0  | 300  | 0.7758          | {'precision': 0.7133479212253829, 'recall': 0.8059332509270705, 'f1': 0.7568195008705745, 'number': 809}    | {'precision': 0.38095238095238093, 'recall': 0.40336134453781514, 'f1': 0.39183673469387753, 'number': 119} | {'precision': 0.7880434782608695, 'recall': 0.8169014084507042, 'f1': 0.8022130013831259, 'number': 1065}   | 0.7323            | 0.7878         | 0.7590     | 0.8077           |
| 0.1124        | 13.0  | 325  | 0.7878          | {'precision': 0.7150776053215078, 'recall': 0.7972805933250927, 'f1': 0.7539450613676213, 'number': 809}    | {'precision': 0.38848920863309355, 'recall': 0.453781512605042, 'f1': 0.4186046511627907, 'number': 119}    | {'precision': 0.7922312556458898, 'recall': 0.8234741784037559, 'f1': 0.8075506445672191, 'number': 1065}   | 0.7337            | 0.7908         | 0.7612     | 0.8094           |
| 0.1077        | 14.0  | 350  | 0.7945          | {'precision': 0.7136612021857923, 'recall': 0.8071693448702101, 'f1': 0.7575406032482598, 'number': 809}    | {'precision': 0.36619718309859156, 'recall': 0.4369747899159664, 'f1': 0.39846743295019166, 'number': 119}  | {'precision': 0.7887197851387645, 'recall': 0.8272300469483568, 'f1': 0.8075160403299725, 'number': 1065}   | 0.7295            | 0.7958         | 0.7612     | 0.8098           |
| 0.1001        | 15.0  | 375  | 0.7960          | {'precision': 0.7169603524229075, 'recall': 0.8046971569839307, 'f1': 0.7582993593476993, 'number': 809}    | {'precision': 0.36619718309859156, 'recall': 0.4369747899159664, 'f1': 0.39846743295019166, 'number': 119}  | {'precision': 0.7883408071748879, 'recall': 0.8253521126760563, 'f1': 0.8064220183486238, 'number': 1065}   | 0.7307            | 0.7938         | 0.7609     | 0.8081           |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.0+cu117
- Datasets 2.11.0
- Tokenizers 0.13.3