File size: 10,965 Bytes
f61da97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
---
license: apache-2.0
base_model: alexredna/TinyLlama-1.1B-Chat-v1.0-reasoning-v2
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: TinyLlama-1.1B-Chat-v1.0-reasoning-v2-dpo
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# TinyLlama-1.1B-Chat-v1.0-reasoning-v2-dpo

This model is a fine-tuned version of [alexredna/TinyLlama-1.1B-Chat-v1.0-reasoning-v2](https://huggingface.co/alexredna/TinyLlama-1.1B-Chat-v1.0-reasoning-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1772
- Rewards/chosen: -0.9390
- Rewards/rejected: -4.1141
- Rewards/accuracies: 0.8385
- Rewards/margins: 3.1750
- Logps/rejected: -327.8484
- Logps/chosen: -280.3031
- Logits/rejected: -2.7526
- Logits/chosen: -2.6271

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6892        | 0.06  | 100  | 0.6904          | -0.0007        | -0.0068          | 0.4692             | 0.0061          | -286.7757      | -270.9199    | -2.7940         | -2.6576       |
| 0.6767        | 0.13  | 200  | 0.6754          | -0.0060        | -0.0430          | 0.6385             | 0.0370          | -287.1373      | -270.9724    | -2.7931         | -2.6568       |
| 0.6493        | 0.19  | 300  | 0.6431          | -0.0105        | -0.1151          | 0.7885             | 0.1046          | -287.8588      | -271.0174    | -2.7922         | -2.6561       |
| 0.5809        | 0.25  | 400  | 0.5879          | -0.0345        | -0.2649          | 0.8308             | 0.2304          | -289.3571      | -271.2578    | -2.7893         | -2.6534       |
| 0.4994        | 0.32  | 500  | 0.5043          | -0.0774        | -0.5296          | 0.8385             | 0.4522          | -292.0042      | -271.6873    | -2.7851         | -2.6499       |
| 0.4093        | 0.38  | 600  | 0.4360          | -0.1267        | -0.8043          | 0.8385             | 0.6776          | -294.7504      | -272.1800    | -2.7820         | -2.6476       |
| 0.3951        | 0.44  | 700  | 0.3844          | -0.1731        | -1.0600          | 0.8423             | 0.8870          | -297.3079      | -272.6434    | -2.7796         | -2.6459       |
| 0.3307        | 0.51  | 800  | 0.3413          | -0.2208        | -1.3252          | 0.8346             | 1.1044          | -299.9597      | -273.1208    | -2.7764         | -2.6434       |
| 0.3035        | 0.57  | 900  | 0.3095          | -0.2914        | -1.5963          | 0.8308             | 1.3049          | -302.6710      | -273.8272    | -2.7734         | -2.6410       |
| 0.2565        | 0.63  | 1000 | 0.2856          | -0.3318        | -1.8163          | 0.8385             | 1.4845          | -304.8706      | -274.2305    | -2.7712         | -2.6397       |
| 0.2409        | 0.7   | 1100 | 0.2676          | -0.3754        | -2.0199          | 0.8385             | 1.6445          | -306.9071      | -274.6673    | -2.7691         | -2.6380       |
| 0.2341        | 0.76  | 1200 | 0.2515          | -0.4233        | -2.2275          | 0.8385             | 1.8042          | -308.9832      | -275.1463    | -2.7675         | -2.6371       |
| 0.2584        | 0.82  | 1300 | 0.2393          | -0.4799        | -2.4301          | 0.8385             | 1.9501          | -311.0082      | -275.7123    | -2.7653         | -2.6355       |
| 0.2171        | 0.89  | 1400 | 0.2294          | -0.5274        | -2.6087          | 0.8385             | 2.0812          | -312.7944      | -276.1873    | -2.7635         | -2.6342       |
| 0.1638        | 0.95  | 1500 | 0.2206          | -0.5748        | -2.7894          | 0.8385             | 2.2146          | -314.6021      | -276.6611    | -2.7623         | -2.6336       |
| 0.2334        | 1.02  | 1600 | 0.2147          | -0.6108        | -2.9348          | 0.8385             | 2.3240          | -316.0559      | -277.0210    | -2.7603         | -2.6319       |
| 0.2178        | 1.08  | 1700 | 0.2086          | -0.6523        | -3.0743          | 0.8385             | 2.4220          | -317.4505      | -277.4355    | -2.7597         | -2.6314       |
| 0.1704        | 1.14  | 1800 | 0.2037          | -0.6819        | -3.1955          | 0.8385             | 2.5136          | -318.6626      | -277.7317    | -2.7590         | -2.6309       |
| 0.1683        | 1.21  | 1900 | 0.1996          | -0.7152        | -3.3176          | 0.8385             | 2.6024          | -319.8835      | -278.0646    | -2.7587         | -2.6313       |
| 0.271         | 1.27  | 2000 | 0.1959          | -0.7447        | -3.4272          | 0.8385             | 2.6825          | -320.9794      | -278.3595    | -2.7576         | -2.6305       |
| 0.127         | 1.33  | 2100 | 0.1930          | -0.7665        | -3.5137          | 0.8385             | 2.7472          | -321.8449      | -278.5782    | -2.7571         | -2.6302       |
| 0.2107        | 1.4   | 2200 | 0.1905          | -0.7830        | -3.5883          | 0.8385             | 2.8053          | -322.5906      | -278.7429    | -2.7572         | -2.6305       |
| 0.1977        | 1.46  | 2300 | 0.1883          | -0.7986        | -3.6574          | 0.8385             | 2.8588          | -323.2822      | -278.8991    | -2.7566         | -2.6300       |
| 0.1655        | 1.52  | 2400 | 0.1872          | -0.8203        | -3.7149          | 0.8385             | 2.8946          | -323.8572      | -279.1161    | -2.7553         | -2.6289       |
| 0.1776        | 1.59  | 2500 | 0.1850          | -0.8439        | -3.7881          | 0.8385             | 2.9442          | -324.5885      | -279.3518    | -2.7548         | -2.6285       |
| 0.1372        | 1.65  | 2600 | 0.1850          | -0.8548        | -3.8280          | 0.8385             | 2.9732          | -324.9880      | -279.4609    | -2.7544         | -2.6282       |
| 0.15          | 1.71  | 2700 | 0.1836          | -0.8734        | -3.8792          | 0.8385             | 3.0059          | -325.5001      | -279.6465    | -2.7543         | -2.6283       |
| 0.1338        | 1.78  | 2800 | 0.1823          | -0.8736        | -3.9132          | 0.8385             | 3.0396          | -325.8393      | -279.6486    | -2.7541         | -2.6282       |
| 0.1507        | 1.84  | 2900 | 0.1811          | -0.8932        | -3.9558          | 0.8385             | 3.0626          | -326.2653      | -279.8444    | -2.7533         | -2.6273       |
| 0.1615        | 1.9   | 3000 | 0.1811          | -0.8986        | -3.9790          | 0.8385             | 3.0804          | -326.4981      | -279.8992    | -2.7533         | -2.6275       |
| 0.1656        | 1.97  | 3100 | 0.1800          | -0.9039        | -4.0052          | 0.8385             | 3.1012          | -326.7594      | -279.9523    | -2.7528         | -2.6270       |
| 0.1398        | 2.03  | 3200 | 0.1797          | -0.9123        | -4.0258          | 0.8385             | 3.1135          | -326.9660      | -280.0360    | -2.7534         | -2.6278       |
| 0.1929        | 2.09  | 3300 | 0.1792          | -0.9098        | -4.0380          | 0.8385             | 3.1282          | -327.0879      | -280.0112    | -2.7524         | -2.6269       |
| 0.1616        | 2.16  | 3400 | 0.1787          | -0.9249        | -4.0622          | 0.8385             | 3.1374          | -327.3301      | -280.1616    | -2.7519         | -2.6263       |
| 0.1664        | 2.22  | 3500 | 0.1790          | -0.9246        | -4.0716          | 0.8385             | 3.1470          | -327.4239      | -280.1592    | -2.7524         | -2.6269       |
| 0.2085        | 2.28  | 3600 | 0.1787          | -0.9301        | -4.0835          | 0.8385             | 3.1534          | -327.5426      | -280.2136    | -2.7532         | -2.6279       |
| 0.1565        | 2.35  | 3700 | 0.1782          | -0.9301        | -4.0909          | 0.8385             | 3.1608          | -327.6164      | -280.2137    | -2.7521         | -2.6265       |
| 0.153         | 2.41  | 3800 | 0.1778          | -0.9281        | -4.0947          | 0.8385             | 3.1666          | -327.6550      | -280.1937    | -2.7522         | -2.6268       |
| 0.1787        | 2.47  | 3900 | 0.1783          | -0.9319        | -4.0918          | 0.8385             | 3.1599          | -327.6259      | -280.2316    | -2.7520         | -2.6266       |
| 0.172         | 2.54  | 4000 | 0.1780          | -0.9338        | -4.1035          | 0.8385             | 3.1697          | -327.7429      | -280.2505    | -2.7526         | -2.6273       |
| 0.2643        | 2.6   | 4100 | 0.1771          | -0.9229        | -4.0969          | 0.8385             | 3.1739          | -327.6764      | -280.1422    | -2.7521         | -2.6267       |
| 0.1619        | 2.66  | 4200 | 0.1776          | -0.9326        | -4.1083          | 0.8385             | 3.1757          | -327.7909      | -280.2390    | -2.7523         | -2.6270       |
| 0.2413        | 2.73  | 4300 | 0.1778          | -0.9292        | -4.1024          | 0.8385             | 3.1732          | -327.7315      | -280.2050    | -2.7529         | -2.6277       |
| 0.1187        | 2.79  | 4400 | 0.1778          | -0.9343        | -4.1068          | 0.8385             | 3.1725          | -327.7758      | -280.2554    | -2.7521         | -2.6267       |
| 0.1439        | 2.86  | 4500 | 0.1776          | -0.9368        | -4.1118          | 0.8385             | 3.1750          | -327.8253      | -280.2808    | -2.7517         | -2.6263       |
| 0.1116        | 2.92  | 4600 | 0.1773          | -0.9302        | -4.1079          | 0.8385             | 3.1777          | -327.7867      | -280.2152    | -2.7526         | -2.6272       |
| 0.18          | 2.98  | 4700 | 0.1772          | -0.9290        | -4.1048          | 0.8385             | 3.1758          | -327.7554      | -280.2029    | -2.7526         | -2.6271       |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.15.0