Text-to-Video
Diffusers
Safetensors
I2VGenXLPipeline
image-to-video
sayakpaul HF staff commited on
Commit
d41c055
·
verified ·
1 Parent(s): 8bab3bb

Update README to include the diffusers integration

Browse files
Files changed (1) hide show
  1. README.md +40 -0
README.md CHANGED
@@ -238,7 +238,47 @@ In preparation.
238
 
239
  Our codebase essentially supports all the commonly used components in video generation. You can manage your experiments flexibly by adding corresponding registration classes, including `ENGINE, MODEL, DATASETS, EMBEDDER, AUTO_ENCODER, DISTRIBUTION, VISUAL, DIFFUSION, PRETRAIN`, and can be compatible with all our open-source algorithms according to your own needs. If you have any questions, feel free to give us your feedback at any time.
240
 
 
241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
242
 
243
  ## BibTeX
244
 
 
238
 
239
  Our codebase essentially supports all the commonly used components in video generation. You can manage your experiments flexibly by adding corresponding registration classes, including `ENGINE, MODEL, DATASETS, EMBEDDER, AUTO_ENCODER, DISTRIBUTION, VISUAL, DIFFUSION, PRETRAIN`, and can be compatible with all our open-source algorithms according to your own needs. If you have any questions, feel free to give us your feedback at any time.
240
 
241
+ ## Integration of I2VGenXL with 🧨 diffusers
242
 
243
+ I2VGenXL is supported in the 🧨 diffusers library. Here's how to use it:
244
+
245
+ ```python
246
+ import torch
247
+ from diffusers import I2VGenXLPipeline
248
+ from diffusers.utils import load_image, export_to_gif
249
+
250
+ repo_id = "ali-vilab/i2vgen-xl"
251
+ pipeline = I2VGenXLPipeline.from_pretrained(repo_id, torch_dtype=torch.float16, variant="fp16").to("cuda")
252
+
253
+ image_url = "https://github.com/ali-vilab/i2vgen-xl/blob/main/data/test_images/img_0009.png?download=true"
254
+ image = load_image(image_url).convert("RGB")
255
+ prompt = "Papers were floating in the air on a table in the library"
256
+
257
+ generator = torch.manual_seed(8888)
258
+ frames = pipeline(
259
+ prompt=prompt,
260
+ image=image,
261
+ generator=generator
262
+ ).frames[0]
263
+
264
+ print(export_to_gif(frames))
265
+ ```
266
+
267
+ Find the official documentation [here](https://huggingface.co/docs/diffusers/main/en/api/pipelines/i2vgenxl).
268
+
269
+ Sample output with I2VGenXL:
270
+
271
+ <table>
272
+ <tr>
273
+ <td><center>
274
+ masterpiece, bestquality, sunset.
275
+ <br>
276
+ <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/i2vgen-xl-example.gif"
277
+ alt="library"
278
+ style="width: 300px;" />
279
+ </center></td>
280
+ </tr>
281
+ </table>
282
 
283
  ## BibTeX
284