diff --git "a/README.md" "b/README.md" --- "a/README.md" +++ "b/README.md" @@ -2,3013 +2,436 @@ tags: - mteb - sentence transformers -model-index: -- name: bge-small-en - results: - - task: - type: Classification - dataset: - type: mteb/amazon_counterfactual - name: MTEB AmazonCounterfactualClassification (en) - config: en - split: test - revision: e8379541af4e31359cca9fbcf4b00f2671dba205 - metrics: - - type: accuracy - value: 74.34328358208955 - - type: ap - value: 37.59947775195661 - - type: f1 - value: 68.548415491933 - - task: - type: Classification - dataset: - type: mteb/amazon_polarity - name: MTEB AmazonPolarityClassification - config: default - split: test - revision: e2d317d38cd51312af73b3d32a06d1a08b442046 - metrics: - - type: accuracy - value: 93.04527499999999 - - type: ap - value: 89.60696356772135 - - type: f1 - value: 93.03361469382438 - - task: - type: Classification - dataset: - type: mteb/amazon_reviews_multi - name: MTEB AmazonReviewsClassification (en) - config: en - split: test - revision: 1399c76144fd37290681b995c656ef9b2e06e26d - metrics: - - type: accuracy - value: 46.08 - - type: f1 - value: 45.66249835363254 - - task: - type: Retrieval - dataset: - type: arguana - name: MTEB ArguAna - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 35.205999999999996 - - type: map_at_10 - value: 50.782000000000004 - - type: map_at_100 - value: 51.547 - - type: map_at_1000 - value: 51.554 - - type: map_at_3 - value: 46.515 - - type: map_at_5 - value: 49.296 - - type: mrr_at_1 - value: 35.632999999999996 - - type: mrr_at_10 - value: 50.958999999999996 - - type: mrr_at_100 - value: 51.724000000000004 - - type: mrr_at_1000 - value: 51.731 - - type: mrr_at_3 - value: 46.669 - - type: mrr_at_5 - value: 49.439 - - type: ndcg_at_1 - value: 35.205999999999996 - - type: ndcg_at_10 - value: 58.835 - - type: ndcg_at_100 - value: 62.095 - - type: ndcg_at_1000 - value: 62.255 - - type: ndcg_at_3 - value: 50.255 - - type: ndcg_at_5 - value: 55.296 - - type: precision_at_1 - value: 35.205999999999996 - - type: precision_at_10 - value: 8.421 - - type: precision_at_100 - value: 0.984 - - type: precision_at_1000 - value: 0.1 - - type: precision_at_3 - value: 20.365 - - type: precision_at_5 - value: 14.680000000000001 - - type: recall_at_1 - value: 35.205999999999996 - - type: recall_at_10 - value: 84.211 - - type: recall_at_100 - value: 98.43499999999999 - - type: recall_at_1000 - value: 99.644 - - type: recall_at_3 - value: 61.095 - - type: recall_at_5 - value: 73.4 - - task: - type: Clustering - dataset: - type: mteb/arxiv-clustering-p2p - name: MTEB ArxivClusteringP2P - config: default - split: test - revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d - metrics: - - type: v_measure - value: 47.52644476278646 - - task: - type: Clustering - dataset: - type: mteb/arxiv-clustering-s2s - name: MTEB ArxivClusteringS2S - config: default - split: test - revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 - metrics: - - type: v_measure - value: 39.973045724188964 - - task: - type: Reranking - dataset: - type: mteb/askubuntudupquestions-reranking - name: MTEB AskUbuntuDupQuestions - config: default - split: test - revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 - metrics: - - type: map - value: 62.28285314871488 - - type: mrr - value: 74.52743701358659 - - task: - type: STS - dataset: - type: mteb/biosses-sts - name: MTEB BIOSSES - config: default - split: test - revision: d3fb88f8f02e40887cd149695127462bbcf29b4a - metrics: - - type: cos_sim_pearson - value: 80.09041909160327 - - type: cos_sim_spearman - value: 79.96266537706944 - - type: euclidean_pearson - value: 79.50774978162241 - - type: euclidean_spearman - value: 79.9144715078551 - - type: manhattan_pearson - value: 79.2062139879302 - - type: manhattan_spearman - value: 79.35000081468212 - - task: - type: Classification - dataset: - type: mteb/banking77 - name: MTEB Banking77Classification - config: default - split: test - revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 - metrics: - - type: accuracy - value: 85.31493506493506 - - type: f1 - value: 85.2704557977762 - - task: - type: Clustering - dataset: - type: mteb/biorxiv-clustering-p2p - name: MTEB BiorxivClusteringP2P - config: default - split: test - revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 - metrics: - - type: v_measure - value: 39.6837242810816 - - task: - type: Clustering - dataset: - type: mteb/biorxiv-clustering-s2s - name: MTEB BiorxivClusteringS2S - config: default - split: test - revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 - metrics: - - type: v_measure - value: 35.38881249555897 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackAndroidRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 27.884999999999998 - - type: map_at_10 - value: 39.574 - - type: map_at_100 - value: 40.993 - - type: map_at_1000 - value: 41.129 - - type: map_at_3 - value: 36.089 - - type: map_at_5 - value: 38.191 - - type: mrr_at_1 - value: 34.477999999999994 - - type: mrr_at_10 - value: 45.411 - - type: mrr_at_100 - value: 46.089999999999996 - - type: mrr_at_1000 - value: 46.147 - - type: mrr_at_3 - value: 42.346000000000004 - - type: mrr_at_5 - value: 44.292 - - type: ndcg_at_1 - value: 34.477999999999994 - - type: ndcg_at_10 - value: 46.123999999999995 - - type: ndcg_at_100 - value: 51.349999999999994 - - type: ndcg_at_1000 - value: 53.578 - - type: ndcg_at_3 - value: 40.824 - - type: ndcg_at_5 - value: 43.571 - - type: precision_at_1 - value: 34.477999999999994 - - type: precision_at_10 - value: 8.841000000000001 - - type: precision_at_100 - value: 1.4460000000000002 - - type: precision_at_1000 - value: 0.192 - - type: precision_at_3 - value: 19.742 - - type: precision_at_5 - value: 14.421000000000001 - - type: recall_at_1 - value: 27.884999999999998 - - type: recall_at_10 - value: 59.087 - - type: recall_at_100 - value: 80.609 - - type: recall_at_1000 - value: 95.054 - - type: recall_at_3 - value: 44.082 - - type: recall_at_5 - value: 51.593999999999994 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackEnglishRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 30.639 - - type: map_at_10 - value: 40.047 - - type: map_at_100 - value: 41.302 - - type: map_at_1000 - value: 41.425 - - type: map_at_3 - value: 37.406 - - type: map_at_5 - value: 38.934000000000005 - - type: mrr_at_1 - value: 37.707 - - type: mrr_at_10 - value: 46.082 - - type: mrr_at_100 - value: 46.745 - - type: mrr_at_1000 - value: 46.786 - - type: mrr_at_3 - value: 43.980999999999995 - - type: mrr_at_5 - value: 45.287 - - type: ndcg_at_1 - value: 37.707 - - type: ndcg_at_10 - value: 45.525 - - type: ndcg_at_100 - value: 49.976 - - type: ndcg_at_1000 - value: 51.94499999999999 - - type: ndcg_at_3 - value: 41.704 - - type: ndcg_at_5 - value: 43.596000000000004 - - type: precision_at_1 - value: 37.707 - - type: precision_at_10 - value: 8.465 - - type: precision_at_100 - value: 1.375 - - type: precision_at_1000 - value: 0.183 - - type: precision_at_3 - value: 19.979 - - type: precision_at_5 - value: 14.115 - - type: recall_at_1 - value: 30.639 - - type: recall_at_10 - value: 54.775 - - type: recall_at_100 - value: 73.678 - - type: recall_at_1000 - value: 86.142 - - type: recall_at_3 - value: 43.230000000000004 - - type: recall_at_5 - value: 48.622 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackGamingRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 38.038 - - type: map_at_10 - value: 49.922 - - type: map_at_100 - value: 51.032 - - type: map_at_1000 - value: 51.085 - - type: map_at_3 - value: 46.664 - - type: map_at_5 - value: 48.588 - - type: mrr_at_1 - value: 43.95 - - type: mrr_at_10 - value: 53.566 - - type: mrr_at_100 - value: 54.318999999999996 - - type: mrr_at_1000 - value: 54.348 - - type: mrr_at_3 - value: 51.066 - - type: mrr_at_5 - value: 52.649 - - type: ndcg_at_1 - value: 43.95 - - type: ndcg_at_10 - value: 55.676 - - type: ndcg_at_100 - value: 60.126000000000005 - - type: ndcg_at_1000 - value: 61.208 - - type: ndcg_at_3 - value: 50.20400000000001 - - type: ndcg_at_5 - value: 53.038 - - type: precision_at_1 - value: 43.95 - - type: precision_at_10 - value: 8.953 - - type: precision_at_100 - value: 1.2109999999999999 - - type: precision_at_1000 - value: 0.135 - - type: precision_at_3 - value: 22.256999999999998 - - type: precision_at_5 - value: 15.524 - - type: recall_at_1 - value: 38.038 - - type: recall_at_10 - value: 69.15 - - type: recall_at_100 - value: 88.31599999999999 - - type: recall_at_1000 - value: 95.993 - - type: recall_at_3 - value: 54.663 - - type: recall_at_5 - value: 61.373 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackGisRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 24.872 - - type: map_at_10 - value: 32.912 - - type: map_at_100 - value: 33.972 - - type: map_at_1000 - value: 34.046 - - type: map_at_3 - value: 30.361 - - type: map_at_5 - value: 31.704 - - type: mrr_at_1 - value: 26.779999999999998 - - type: mrr_at_10 - value: 34.812 - - type: mrr_at_100 - value: 35.754999999999995 - - type: mrr_at_1000 - value: 35.809000000000005 - - type: mrr_at_3 - value: 32.335 - - type: mrr_at_5 - value: 33.64 - - type: ndcg_at_1 - value: 26.779999999999998 - - type: ndcg_at_10 - value: 37.623 - - type: ndcg_at_100 - value: 42.924 - - type: ndcg_at_1000 - value: 44.856 - - type: ndcg_at_3 - value: 32.574 - - type: ndcg_at_5 - value: 34.842 - - type: precision_at_1 - value: 26.779999999999998 - - type: precision_at_10 - value: 5.729 - - type: precision_at_100 - value: 0.886 - - type: precision_at_1000 - value: 0.109 - - type: precision_at_3 - value: 13.559 - - type: precision_at_5 - value: 9.469 - - type: recall_at_1 - value: 24.872 - - type: recall_at_10 - value: 50.400999999999996 - - type: recall_at_100 - value: 74.954 - - type: recall_at_1000 - value: 89.56 - - type: recall_at_3 - value: 36.726 - - type: recall_at_5 - value: 42.138999999999996 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackMathematicaRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 16.803 - - type: map_at_10 - value: 24.348 - - type: map_at_100 - value: 25.56 - - type: map_at_1000 - value: 25.668000000000003 - - type: map_at_3 - value: 21.811 - - type: map_at_5 - value: 23.287 - - type: mrr_at_1 - value: 20.771 - - type: mrr_at_10 - value: 28.961 - - type: mrr_at_100 - value: 29.979 - - type: mrr_at_1000 - value: 30.046 - - type: mrr_at_3 - value: 26.555 - - type: mrr_at_5 - value: 28.060000000000002 - - type: ndcg_at_1 - value: 20.771 - - type: ndcg_at_10 - value: 29.335 - - type: ndcg_at_100 - value: 35.188 - - type: ndcg_at_1000 - value: 37.812 - - type: ndcg_at_3 - value: 24.83 - - type: ndcg_at_5 - value: 27.119 - - type: precision_at_1 - value: 20.771 - - type: precision_at_10 - value: 5.4350000000000005 - - type: precision_at_100 - value: 0.9480000000000001 - - type: precision_at_1000 - value: 0.13 - - type: precision_at_3 - value: 11.982 - - type: precision_at_5 - value: 8.831 - - type: recall_at_1 - value: 16.803 - - type: recall_at_10 - value: 40.039 - - type: recall_at_100 - value: 65.83200000000001 - - type: recall_at_1000 - value: 84.478 - - type: recall_at_3 - value: 27.682000000000002 - - type: recall_at_5 - value: 33.535 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackPhysicsRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 28.345 - - type: map_at_10 - value: 37.757000000000005 - - type: map_at_100 - value: 39.141 - - type: map_at_1000 - value: 39.262 - - type: map_at_3 - value: 35.183 - - type: map_at_5 - value: 36.592 - - type: mrr_at_1 - value: 34.649 - - type: mrr_at_10 - value: 43.586999999999996 - - type: mrr_at_100 - value: 44.481 - - type: mrr_at_1000 - value: 44.542 - - type: mrr_at_3 - value: 41.29 - - type: mrr_at_5 - value: 42.642 - - type: ndcg_at_1 - value: 34.649 - - type: ndcg_at_10 - value: 43.161 - - type: ndcg_at_100 - value: 48.734 - - type: ndcg_at_1000 - value: 51.046 - - type: ndcg_at_3 - value: 39.118 - - type: ndcg_at_5 - value: 41.022 - - type: precision_at_1 - value: 34.649 - - type: precision_at_10 - value: 7.603 - - type: precision_at_100 - value: 1.209 - - type: precision_at_1000 - value: 0.157 - - type: precision_at_3 - value: 18.319 - - type: precision_at_5 - value: 12.839 - - type: recall_at_1 - value: 28.345 - - type: recall_at_10 - value: 53.367 - - type: recall_at_100 - value: 76.453 - - type: recall_at_1000 - value: 91.82000000000001 - - type: recall_at_3 - value: 41.636 - - type: recall_at_5 - value: 46.760000000000005 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackProgrammersRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 22.419 - - type: map_at_10 - value: 31.716 - - type: map_at_100 - value: 33.152 - - type: map_at_1000 - value: 33.267 - - type: map_at_3 - value: 28.74 - - type: map_at_5 - value: 30.48 - - type: mrr_at_1 - value: 28.310999999999996 - - type: mrr_at_10 - value: 37.039 - - type: mrr_at_100 - value: 38.09 - - type: mrr_at_1000 - value: 38.145 - - type: mrr_at_3 - value: 34.437 - - type: mrr_at_5 - value: 36.024 - - type: ndcg_at_1 - value: 28.310999999999996 - - type: ndcg_at_10 - value: 37.41 - - type: ndcg_at_100 - value: 43.647999999999996 - - type: ndcg_at_1000 - value: 46.007 - - type: ndcg_at_3 - value: 32.509 - - type: ndcg_at_5 - value: 34.943999999999996 - - type: precision_at_1 - value: 28.310999999999996 - - type: precision_at_10 - value: 6.963 - - type: precision_at_100 - value: 1.1860000000000002 - - type: precision_at_1000 - value: 0.154 - - type: precision_at_3 - value: 15.867999999999999 - - type: precision_at_5 - value: 11.507000000000001 - - type: recall_at_1 - value: 22.419 - - type: recall_at_10 - value: 49.28 - - type: recall_at_100 - value: 75.802 - - type: recall_at_1000 - value: 92.032 - - type: recall_at_3 - value: 35.399 - - type: recall_at_5 - value: 42.027 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 24.669249999999998 - - type: map_at_10 - value: 33.332583333333325 - - type: map_at_100 - value: 34.557833333333335 - - type: map_at_1000 - value: 34.67141666666666 - - type: map_at_3 - value: 30.663166666666662 - - type: map_at_5 - value: 32.14883333333333 - - type: mrr_at_1 - value: 29.193833333333334 - - type: mrr_at_10 - value: 37.47625 - - type: mrr_at_100 - value: 38.3545 - - type: mrr_at_1000 - value: 38.413166666666676 - - type: mrr_at_3 - value: 35.06741666666667 - - type: mrr_at_5 - value: 36.450666666666656 - - type: ndcg_at_1 - value: 29.193833333333334 - - type: ndcg_at_10 - value: 38.505416666666676 - - type: ndcg_at_100 - value: 43.81125 - - type: ndcg_at_1000 - value: 46.09558333333333 - - type: ndcg_at_3 - value: 33.90916666666667 - - type: ndcg_at_5 - value: 36.07666666666666 - - type: precision_at_1 - value: 29.193833333333334 - - type: precision_at_10 - value: 6.7251666666666665 - - type: precision_at_100 - value: 1.1058333333333332 - - type: precision_at_1000 - value: 0.14833333333333332 - - type: precision_at_3 - value: 15.554166666666665 - - type: precision_at_5 - value: 11.079250000000002 - - type: recall_at_1 - value: 24.669249999999998 - - type: recall_at_10 - value: 49.75583333333332 - - type: recall_at_100 - value: 73.06908333333332 - - type: recall_at_1000 - value: 88.91316666666667 - - type: recall_at_3 - value: 36.913250000000005 - - type: recall_at_5 - value: 42.48641666666666 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackStatsRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 24.044999999999998 - - type: map_at_10 - value: 30.349999999999998 - - type: map_at_100 - value: 31.273 - - type: map_at_1000 - value: 31.362000000000002 - - type: map_at_3 - value: 28.508 - - type: map_at_5 - value: 29.369 - - type: mrr_at_1 - value: 26.994 - - type: mrr_at_10 - value: 33.12 - - type: mrr_at_100 - value: 33.904 - - type: mrr_at_1000 - value: 33.967000000000006 - - type: mrr_at_3 - value: 31.365 - - type: mrr_at_5 - value: 32.124 - - type: ndcg_at_1 - value: 26.994 - - type: ndcg_at_10 - value: 34.214 - - type: ndcg_at_100 - value: 38.681 - - type: ndcg_at_1000 - value: 40.926 - - type: ndcg_at_3 - value: 30.725 - - type: ndcg_at_5 - value: 31.967000000000002 - - type: precision_at_1 - value: 26.994 - - type: precision_at_10 - value: 5.215 - - type: precision_at_100 - value: 0.807 - - type: precision_at_1000 - value: 0.108 - - type: precision_at_3 - value: 12.986 - - type: precision_at_5 - value: 8.712 - - type: recall_at_1 - value: 24.044999999999998 - - type: recall_at_10 - value: 43.456 - - type: recall_at_100 - value: 63.675000000000004 - - type: recall_at_1000 - value: 80.05499999999999 - - type: recall_at_3 - value: 33.561 - - type: recall_at_5 - value: 36.767 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackTexRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 15.672 - - type: map_at_10 - value: 22.641 - - type: map_at_100 - value: 23.75 - - type: map_at_1000 - value: 23.877000000000002 - - type: map_at_3 - value: 20.219 - - type: map_at_5 - value: 21.648 - - type: mrr_at_1 - value: 18.823 - - type: mrr_at_10 - value: 26.101999999999997 - - type: mrr_at_100 - value: 27.038 - - type: mrr_at_1000 - value: 27.118 - - type: mrr_at_3 - value: 23.669 - - type: mrr_at_5 - value: 25.173000000000002 - - type: ndcg_at_1 - value: 18.823 - - type: ndcg_at_10 - value: 27.176000000000002 - - type: ndcg_at_100 - value: 32.42 - - type: ndcg_at_1000 - value: 35.413 - - type: ndcg_at_3 - value: 22.756999999999998 - - type: ndcg_at_5 - value: 25.032 - - type: precision_at_1 - value: 18.823 - - type: precision_at_10 - value: 5.034000000000001 - - type: precision_at_100 - value: 0.895 - - type: precision_at_1000 - value: 0.132 - - type: precision_at_3 - value: 10.771 - - type: precision_at_5 - value: 8.1 - - type: recall_at_1 - value: 15.672 - - type: recall_at_10 - value: 37.296 - - type: recall_at_100 - value: 60.863 - - type: recall_at_1000 - value: 82.234 - - type: recall_at_3 - value: 25.330000000000002 - - type: recall_at_5 - value: 30.964000000000002 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackUnixRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 24.633 - - type: map_at_10 - value: 32.858 - - type: map_at_100 - value: 34.038000000000004 - - type: map_at_1000 - value: 34.141 - - type: map_at_3 - value: 30.209000000000003 - - type: map_at_5 - value: 31.567 - - type: mrr_at_1 - value: 28.358 - - type: mrr_at_10 - value: 36.433 - - type: mrr_at_100 - value: 37.352000000000004 - - type: mrr_at_1000 - value: 37.41 - - type: mrr_at_3 - value: 34.033 - - type: mrr_at_5 - value: 35.246 - - type: ndcg_at_1 - value: 28.358 - - type: ndcg_at_10 - value: 37.973 - - type: ndcg_at_100 - value: 43.411 - - type: ndcg_at_1000 - value: 45.747 - - type: ndcg_at_3 - value: 32.934999999999995 - - type: ndcg_at_5 - value: 35.013 - - type: precision_at_1 - value: 28.358 - - type: precision_at_10 - value: 6.418 - - type: precision_at_100 - value: 1.02 - - type: precision_at_1000 - value: 0.133 - - type: precision_at_3 - value: 14.677000000000001 - - type: precision_at_5 - value: 10.335999999999999 - - type: recall_at_1 - value: 24.633 - - type: recall_at_10 - value: 50.048 - - type: recall_at_100 - value: 73.821 - - type: recall_at_1000 - value: 90.046 - - type: recall_at_3 - value: 36.284 - - type: recall_at_5 - value: 41.370000000000005 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackWebmastersRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 23.133 - - type: map_at_10 - value: 31.491999999999997 - - type: map_at_100 - value: 33.062000000000005 - - type: map_at_1000 - value: 33.256 - - type: map_at_3 - value: 28.886 - - type: map_at_5 - value: 30.262 - - type: mrr_at_1 - value: 28.063 - - type: mrr_at_10 - value: 36.144 - - type: mrr_at_100 - value: 37.14 - - type: mrr_at_1000 - value: 37.191 - - type: mrr_at_3 - value: 33.762 - - type: mrr_at_5 - value: 34.997 - - type: ndcg_at_1 - value: 28.063 - - type: ndcg_at_10 - value: 36.951 - - type: ndcg_at_100 - value: 43.287 - - type: ndcg_at_1000 - value: 45.777 - - type: ndcg_at_3 - value: 32.786 - - type: ndcg_at_5 - value: 34.65 - - type: precision_at_1 - value: 28.063 - - type: precision_at_10 - value: 7.055 - - type: precision_at_100 - value: 1.476 - - type: precision_at_1000 - value: 0.22899999999999998 - - type: precision_at_3 - value: 15.481 - - type: precision_at_5 - value: 11.186 - - type: recall_at_1 - value: 23.133 - - type: recall_at_10 - value: 47.285 - - type: recall_at_100 - value: 76.176 - - type: recall_at_1000 - value: 92.176 - - type: recall_at_3 - value: 35.223 - - type: recall_at_5 - value: 40.142 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackWordpressRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 19.547 - - type: map_at_10 - value: 26.374 - - type: map_at_100 - value: 27.419 - - type: map_at_1000 - value: 27.539 - - type: map_at_3 - value: 23.882 - - type: map_at_5 - value: 25.163999999999998 - - type: mrr_at_1 - value: 21.442 - - type: mrr_at_10 - value: 28.458 - - type: mrr_at_100 - value: 29.360999999999997 - - type: mrr_at_1000 - value: 29.448999999999998 - - type: mrr_at_3 - value: 25.97 - - type: mrr_at_5 - value: 27.273999999999997 - - type: ndcg_at_1 - value: 21.442 - - type: ndcg_at_10 - value: 30.897000000000002 - - type: ndcg_at_100 - value: 35.99 - - type: ndcg_at_1000 - value: 38.832 - - type: ndcg_at_3 - value: 25.944 - - type: ndcg_at_5 - value: 28.126 - - type: precision_at_1 - value: 21.442 - - type: precision_at_10 - value: 4.9910000000000005 - - type: precision_at_100 - value: 0.8109999999999999 - - type: precision_at_1000 - value: 0.11800000000000001 - - type: precision_at_3 - value: 11.029 - - type: precision_at_5 - value: 7.911 - - type: recall_at_1 - value: 19.547 - - type: recall_at_10 - value: 42.886 - - type: recall_at_100 - value: 66.64999999999999 - - type: recall_at_1000 - value: 87.368 - - type: recall_at_3 - value: 29.143 - - type: recall_at_5 - value: 34.544000000000004 - - task: - type: Retrieval - dataset: - type: climate-fever - name: MTEB ClimateFEVER - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 15.572 - - type: map_at_10 - value: 25.312 - - type: map_at_100 - value: 27.062 - - type: map_at_1000 - value: 27.253 - - type: map_at_3 - value: 21.601 - - type: map_at_5 - value: 23.473 - - type: mrr_at_1 - value: 34.984 - - type: mrr_at_10 - value: 46.406 - - type: mrr_at_100 - value: 47.179 - - type: mrr_at_1000 - value: 47.21 - - type: mrr_at_3 - value: 43.485 - - type: mrr_at_5 - value: 45.322 - - type: ndcg_at_1 - value: 34.984 - - type: ndcg_at_10 - value: 34.344 - - type: ndcg_at_100 - value: 41.015 - - type: ndcg_at_1000 - value: 44.366 - - type: ndcg_at_3 - value: 29.119 - - type: ndcg_at_5 - value: 30.825999999999997 - - type: precision_at_1 - value: 34.984 - - type: precision_at_10 - value: 10.358 - - type: precision_at_100 - value: 1.762 - - type: precision_at_1000 - value: 0.23900000000000002 - - type: precision_at_3 - value: 21.368000000000002 - - type: precision_at_5 - value: 15.948 - - type: recall_at_1 - value: 15.572 - - type: recall_at_10 - value: 39.367999999999995 - - type: recall_at_100 - value: 62.183 - - type: recall_at_1000 - value: 80.92200000000001 - - type: recall_at_3 - value: 26.131999999999998 - - type: recall_at_5 - value: 31.635999999999996 - - task: - type: Retrieval - dataset: - type: dbpedia-entity - name: MTEB DBPedia - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 8.848 - - type: map_at_10 - value: 19.25 - - type: map_at_100 - value: 27.193 - - type: map_at_1000 - value: 28.721999999999998 - - type: map_at_3 - value: 13.968 - - type: map_at_5 - value: 16.283 - - type: mrr_at_1 - value: 68.75 - - type: mrr_at_10 - value: 76.25 - - type: mrr_at_100 - value: 76.534 - - type: mrr_at_1000 - value: 76.53999999999999 - - type: mrr_at_3 - value: 74.667 - - type: mrr_at_5 - value: 75.86699999999999 - - type: ndcg_at_1 - value: 56.00000000000001 - - type: ndcg_at_10 - value: 41.426 - - type: ndcg_at_100 - value: 45.660000000000004 - - type: ndcg_at_1000 - value: 53.02 - - type: ndcg_at_3 - value: 46.581 - - type: ndcg_at_5 - value: 43.836999999999996 - - type: precision_at_1 - value: 68.75 - - type: precision_at_10 - value: 32.800000000000004 - - type: precision_at_100 - value: 10.440000000000001 - - type: precision_at_1000 - value: 1.9980000000000002 - - type: precision_at_3 - value: 49.667 - - type: precision_at_5 - value: 42.25 - - type: recall_at_1 - value: 8.848 - - type: recall_at_10 - value: 24.467 - - type: recall_at_100 - value: 51.344 - - type: recall_at_1000 - value: 75.235 - - type: recall_at_3 - value: 15.329 - - type: recall_at_5 - value: 18.892999999999997 - - task: - type: Classification - dataset: - type: mteb/emotion - name: MTEB EmotionClassification - config: default - split: test - revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 - metrics: - - type: accuracy - value: 48.95 - - type: f1 - value: 43.44563593360779 - - task: - type: Retrieval - dataset: - type: fever - name: MTEB FEVER - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 78.036 - - type: map_at_10 - value: 85.639 - - type: map_at_100 - value: 85.815 - - type: map_at_1000 - value: 85.829 - - type: map_at_3 - value: 84.795 - - type: map_at_5 - value: 85.336 - - type: mrr_at_1 - value: 84.353 - - type: mrr_at_10 - value: 90.582 - - type: mrr_at_100 - value: 90.617 - - type: mrr_at_1000 - value: 90.617 - - type: mrr_at_3 - value: 90.132 - - type: mrr_at_5 - value: 90.447 - - type: ndcg_at_1 - value: 84.353 - - type: ndcg_at_10 - value: 89.003 - - type: ndcg_at_100 - value: 89.60000000000001 - - type: ndcg_at_1000 - value: 89.836 - - type: ndcg_at_3 - value: 87.81400000000001 - - type: ndcg_at_5 - value: 88.478 - - type: precision_at_1 - value: 84.353 - - type: precision_at_10 - value: 10.482 - - type: precision_at_100 - value: 1.099 - - type: precision_at_1000 - value: 0.11399999999999999 - - type: precision_at_3 - value: 33.257999999999996 - - type: precision_at_5 - value: 20.465 - - type: recall_at_1 - value: 78.036 - - type: recall_at_10 - value: 94.517 - - type: recall_at_100 - value: 96.828 - - type: recall_at_1000 - value: 98.261 - - type: recall_at_3 - value: 91.12 - - type: recall_at_5 - value: 92.946 - - task: - type: Retrieval - dataset: - type: fiqa - name: MTEB FiQA2018 - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 20.191 - - type: map_at_10 - value: 32.369 - - type: map_at_100 - value: 34.123999999999995 - - type: map_at_1000 - value: 34.317 - - type: map_at_3 - value: 28.71 - - type: map_at_5 - value: 30.607 - - type: mrr_at_1 - value: 40.894999999999996 - - type: mrr_at_10 - value: 48.842 - - type: mrr_at_100 - value: 49.599 - - type: mrr_at_1000 - value: 49.647000000000006 - - type: mrr_at_3 - value: 46.785 - - type: mrr_at_5 - value: 47.672 - - type: ndcg_at_1 - value: 40.894999999999996 - - type: ndcg_at_10 - value: 39.872 - - type: ndcg_at_100 - value: 46.126 - - type: ndcg_at_1000 - value: 49.476 - - type: ndcg_at_3 - value: 37.153000000000006 - - type: ndcg_at_5 - value: 37.433 - - type: precision_at_1 - value: 40.894999999999996 - - type: precision_at_10 - value: 10.818 - - type: precision_at_100 - value: 1.73 - - type: precision_at_1000 - value: 0.231 - - type: precision_at_3 - value: 25.051000000000002 - - type: precision_at_5 - value: 17.531 - - type: recall_at_1 - value: 20.191 - - type: recall_at_10 - value: 45.768 - - type: recall_at_100 - value: 68.82000000000001 - - type: recall_at_1000 - value: 89.133 - - type: recall_at_3 - value: 33.296 - - type: recall_at_5 - value: 38.022 - - task: - type: Retrieval - dataset: - type: hotpotqa - name: MTEB HotpotQA - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 39.257 - - type: map_at_10 - value: 61.467000000000006 - - type: map_at_100 - value: 62.364 - - type: map_at_1000 - value: 62.424 - - type: map_at_3 - value: 58.228 - - type: map_at_5 - value: 60.283 - - type: mrr_at_1 - value: 78.515 - - type: mrr_at_10 - value: 84.191 - - type: mrr_at_100 - value: 84.378 - - type: mrr_at_1000 - value: 84.385 - - type: mrr_at_3 - value: 83.284 - - type: mrr_at_5 - value: 83.856 - - type: ndcg_at_1 - value: 78.515 - - type: ndcg_at_10 - value: 69.78999999999999 - - type: ndcg_at_100 - value: 72.886 - - type: ndcg_at_1000 - value: 74.015 - - type: ndcg_at_3 - value: 65.23 - - type: ndcg_at_5 - value: 67.80199999999999 - - type: precision_at_1 - value: 78.515 - - type: precision_at_10 - value: 14.519000000000002 - - type: precision_at_100 - value: 1.694 - - type: precision_at_1000 - value: 0.184 - - type: precision_at_3 - value: 41.702 - - type: precision_at_5 - value: 27.046999999999997 - - type: recall_at_1 - value: 39.257 - - type: recall_at_10 - value: 72.59299999999999 - - type: recall_at_100 - value: 84.679 - - type: recall_at_1000 - value: 92.12 - - type: recall_at_3 - value: 62.552 - - type: recall_at_5 - value: 67.616 - - task: - type: Classification - dataset: - type: mteb/imdb - name: MTEB ImdbClassification - config: default - split: test - revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 - metrics: - - type: accuracy - value: 91.5152 - - type: ap - value: 87.64584669595709 - - type: f1 - value: 91.50605576428437 - - task: - type: Retrieval - dataset: - type: msmarco - name: MTEB MSMARCO - config: default - split: dev - revision: None - metrics: - - type: map_at_1 - value: 21.926000000000002 - - type: map_at_10 - value: 34.049 - - type: map_at_100 - value: 35.213 - - type: map_at_1000 - value: 35.265 - - type: map_at_3 - value: 30.309 - - type: map_at_5 - value: 32.407000000000004 - - type: mrr_at_1 - value: 22.55 - - type: mrr_at_10 - value: 34.657 - - type: mrr_at_100 - value: 35.760999999999996 - - type: mrr_at_1000 - value: 35.807 - - type: mrr_at_3 - value: 30.989 - - type: mrr_at_5 - value: 33.039 - - type: ndcg_at_1 - value: 22.55 - - type: ndcg_at_10 - value: 40.842 - - type: ndcg_at_100 - value: 46.436 - - type: ndcg_at_1000 - value: 47.721999999999994 - - type: ndcg_at_3 - value: 33.209 - - type: ndcg_at_5 - value: 36.943 - - type: precision_at_1 - value: 22.55 - - type: precision_at_10 - value: 6.447 - - type: precision_at_100 - value: 0.9249999999999999 - - type: precision_at_1000 - value: 0.104 - - type: precision_at_3 - value: 14.136000000000001 - - type: precision_at_5 - value: 10.381 - - type: recall_at_1 - value: 21.926000000000002 - - type: recall_at_10 - value: 61.724999999999994 - - type: recall_at_100 - value: 87.604 - - type: recall_at_1000 - value: 97.421 - - type: recall_at_3 - value: 40.944 - - type: recall_at_5 - value: 49.915 - - task: - type: Classification - dataset: - type: mteb/mtop_domain - name: MTEB MTOPDomainClassification (en) - config: en - split: test - revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf - metrics: - - type: accuracy - value: 93.54765161878704 - - type: f1 - value: 93.3298945415573 - - task: - type: Classification - dataset: - type: mteb/mtop_intent - name: MTEB MTOPIntentClassification (en) - config: en - split: test - revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba - metrics: - - type: accuracy - value: 75.71591427268582 - - type: f1 - value: 59.32113870474471 - - task: - type: Classification - dataset: - type: mteb/amazon_massive_intent - name: MTEB MassiveIntentClassification (en) - config: en - split: test - revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 - metrics: - - type: accuracy - value: 75.83053127101547 - - type: f1 - value: 73.60757944876475 - - task: - type: Classification - dataset: - type: mteb/amazon_massive_scenario - name: MTEB MassiveScenarioClassification (en) - config: en - split: test - revision: 7d571f92784cd94a019292a1f45445077d0ef634 - metrics: - - type: accuracy - value: 78.72562205783457 - - type: f1 - value: 78.63761662505502 - - task: - type: Clustering - dataset: - type: mteb/medrxiv-clustering-p2p - name: MTEB MedrxivClusteringP2P - config: default - split: test - revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 - metrics: - - type: v_measure - value: 33.37935633767996 - - task: - type: Clustering - dataset: - type: mteb/medrxiv-clustering-s2s - name: MTEB MedrxivClusteringS2S - config: default - split: test - revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 - metrics: - - type: v_measure - value: 31.55270546130387 - - task: - type: Reranking - dataset: - type: mteb/mind_small - name: MTEB MindSmallReranking - config: default - split: test - revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 - metrics: - - type: map - value: 30.462692753143834 - - type: mrr - value: 31.497569753511563 - - task: - type: Retrieval - dataset: - type: nfcorpus - name: MTEB NFCorpus - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 5.646 - - type: map_at_10 - value: 12.498 - - type: map_at_100 - value: 15.486 - - type: map_at_1000 - value: 16.805999999999997 - - type: map_at_3 - value: 9.325 - - type: map_at_5 - value: 10.751 - - type: mrr_at_1 - value: 43.034 - - type: mrr_at_10 - value: 52.662 - - type: mrr_at_100 - value: 53.189 - - type: mrr_at_1000 - value: 53.25 - - type: mrr_at_3 - value: 50.929 - - type: mrr_at_5 - value: 51.92 - - type: ndcg_at_1 - value: 41.796 - - type: ndcg_at_10 - value: 33.477000000000004 - - type: ndcg_at_100 - value: 29.996000000000002 - - type: ndcg_at_1000 - value: 38.864 - - type: ndcg_at_3 - value: 38.940000000000005 - - type: ndcg_at_5 - value: 36.689 - - type: precision_at_1 - value: 43.034 - - type: precision_at_10 - value: 24.799 - - type: precision_at_100 - value: 7.432999999999999 - - type: precision_at_1000 - value: 1.9929999999999999 - - type: precision_at_3 - value: 36.842000000000006 - - type: precision_at_5 - value: 32.135999999999996 - - type: recall_at_1 - value: 5.646 - - type: recall_at_10 - value: 15.963 - - type: recall_at_100 - value: 29.492 - - type: recall_at_1000 - value: 61.711000000000006 - - type: recall_at_3 - value: 10.585 - - type: recall_at_5 - value: 12.753999999999998 - - task: - type: Retrieval - dataset: - type: nq - name: MTEB NQ - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 27.602 - - type: map_at_10 - value: 41.545 - - type: map_at_100 - value: 42.644999999999996 - - type: map_at_1000 - value: 42.685 - - type: map_at_3 - value: 37.261 - - type: map_at_5 - value: 39.706 - - type: mrr_at_1 - value: 31.141000000000002 - - type: mrr_at_10 - value: 44.139 - - type: mrr_at_100 - value: 44.997 - - type: mrr_at_1000 - value: 45.025999999999996 - - type: mrr_at_3 - value: 40.503 - - type: mrr_at_5 - value: 42.64 - - type: ndcg_at_1 - value: 31.141000000000002 - - type: ndcg_at_10 - value: 48.995 - - type: ndcg_at_100 - value: 53.788000000000004 - - type: ndcg_at_1000 - value: 54.730000000000004 - - type: ndcg_at_3 - value: 40.844 - - type: ndcg_at_5 - value: 44.955 - - type: precision_at_1 - value: 31.141000000000002 - - type: precision_at_10 - value: 8.233 - - type: precision_at_100 - value: 1.093 - - type: precision_at_1000 - value: 0.11800000000000001 - - type: precision_at_3 - value: 18.579 - - type: precision_at_5 - value: 13.533999999999999 - - type: recall_at_1 - value: 27.602 - - type: recall_at_10 - value: 69.216 - - type: recall_at_100 - value: 90.252 - - type: recall_at_1000 - value: 97.27 - - type: recall_at_3 - value: 47.987 - - type: recall_at_5 - value: 57.438 - - task: - type: Retrieval - dataset: - type: quora - name: MTEB QuoraRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 70.949 - - type: map_at_10 - value: 84.89999999999999 - - type: map_at_100 - value: 85.531 - - type: map_at_1000 - value: 85.548 - - type: map_at_3 - value: 82.027 - - type: map_at_5 - value: 83.853 - - type: mrr_at_1 - value: 81.69999999999999 - - type: mrr_at_10 - value: 87.813 - - type: mrr_at_100 - value: 87.917 - - type: mrr_at_1000 - value: 87.91799999999999 - - type: mrr_at_3 - value: 86.938 - - type: mrr_at_5 - value: 87.53999999999999 - - type: ndcg_at_1 - value: 81.75 - - type: ndcg_at_10 - value: 88.55499999999999 - - type: ndcg_at_100 - value: 89.765 - - type: ndcg_at_1000 - value: 89.871 - - type: ndcg_at_3 - value: 85.905 - - type: ndcg_at_5 - value: 87.41 - - type: precision_at_1 - value: 81.75 - - type: precision_at_10 - value: 13.403 - - type: precision_at_100 - value: 1.528 - - type: precision_at_1000 - value: 0.157 - - type: precision_at_3 - value: 37.597 - - type: precision_at_5 - value: 24.69 - - type: recall_at_1 - value: 70.949 - - type: recall_at_10 - value: 95.423 - - type: recall_at_100 - value: 99.509 - - type: recall_at_1000 - value: 99.982 - - type: recall_at_3 - value: 87.717 - - type: recall_at_5 - value: 92.032 - - task: - type: Clustering - dataset: - type: mteb/reddit-clustering - name: MTEB RedditClustering - config: default - split: test - revision: 24640382cdbf8abc73003fb0fa6d111a705499eb - metrics: - - type: v_measure - value: 51.76962893449579 - - task: - type: Clustering - dataset: - type: mteb/reddit-clustering-p2p - name: MTEB RedditClusteringP2P - config: default - split: test - revision: 282350215ef01743dc01b456c7f5241fa8937f16 - metrics: - - type: v_measure - value: 62.32897690686379 - - task: - type: Retrieval - dataset: - type: scidocs - name: MTEB SCIDOCS - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 4.478 - - type: map_at_10 - value: 11.994 - - type: map_at_100 - value: 13.977 - - type: map_at_1000 - value: 14.295 - - type: map_at_3 - value: 8.408999999999999 - - type: map_at_5 - value: 10.024 - - type: mrr_at_1 - value: 22.1 - - type: mrr_at_10 - value: 33.526 - - type: mrr_at_100 - value: 34.577000000000005 - - type: mrr_at_1000 - value: 34.632000000000005 - - type: mrr_at_3 - value: 30.217 - - type: mrr_at_5 - value: 31.962000000000003 - - type: ndcg_at_1 - value: 22.1 - - type: ndcg_at_10 - value: 20.191 - - type: ndcg_at_100 - value: 27.954 - - type: ndcg_at_1000 - value: 33.491 - - type: ndcg_at_3 - value: 18.787000000000003 - - type: ndcg_at_5 - value: 16.378999999999998 - - type: precision_at_1 - value: 22.1 - - type: precision_at_10 - value: 10.69 - - type: precision_at_100 - value: 2.1919999999999997 - - type: precision_at_1000 - value: 0.35200000000000004 - - type: precision_at_3 - value: 17.732999999999997 - - type: precision_at_5 - value: 14.499999999999998 - - type: recall_at_1 - value: 4.478 - - type: recall_at_10 - value: 21.657 - - type: recall_at_100 - value: 44.54 - - type: recall_at_1000 - value: 71.542 - - type: recall_at_3 - value: 10.778 - - type: recall_at_5 - value: 14.687 - - task: - type: STS - dataset: - type: mteb/sickr-sts - name: MTEB SICK-R - config: default - split: test - revision: a6ea5a8cab320b040a23452cc28066d9beae2cee - metrics: - - type: cos_sim_pearson - value: 82.82325259156718 - - type: cos_sim_spearman - value: 79.2463589100662 - - type: euclidean_pearson - value: 80.48318380496771 - - type: euclidean_spearman - value: 79.34451935199979 - - type: manhattan_pearson - value: 80.39041824178759 - - type: manhattan_spearman - value: 79.23002892700211 - - task: - type: STS - dataset: - type: mteb/sts12-sts - name: MTEB STS12 - config: default - split: test - revision: a0d554a64d88156834ff5ae9920b964011b16384 - metrics: - - type: cos_sim_pearson - value: 85.74130231431258 - - type: cos_sim_spearman - value: 78.36856568042397 - - type: euclidean_pearson - value: 82.48301631890303 - - type: euclidean_spearman - value: 78.28376980722732 - - type: manhattan_pearson - value: 82.43552075450525 - - type: manhattan_spearman - value: 78.22702443947126 - - task: - type: STS - dataset: - type: mteb/sts13-sts - name: MTEB STS13 - config: default - split: test - revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca - metrics: - - type: cos_sim_pearson - value: 79.96138619461459 - - type: cos_sim_spearman - value: 81.85436343502379 - - type: euclidean_pearson - value: 81.82895226665367 - - type: euclidean_spearman - value: 82.22707349602916 - - type: manhattan_pearson - value: 81.66303369445873 - - type: manhattan_spearman - value: 82.05030197179455 - - task: - type: STS - dataset: - type: mteb/sts14-sts - name: MTEB STS14 - config: default - split: test - revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 - metrics: - - type: cos_sim_pearson - value: 80.05481244198648 - - type: cos_sim_spearman - value: 80.85052504637808 - - type: euclidean_pearson - value: 80.86728419744497 - - type: euclidean_spearman - value: 81.033786401512 - - type: manhattan_pearson - value: 80.90107531061103 - - type: manhattan_spearman - value: 81.11374116827795 - - task: - type: STS - dataset: - type: mteb/sts15-sts - name: MTEB STS15 - config: default - split: test - revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 - metrics: - - type: cos_sim_pearson - value: 84.615220756399 - - type: cos_sim_spearman - value: 86.46858500002092 - - type: euclidean_pearson - value: 86.08307800247586 - - type: euclidean_spearman - value: 86.72691443870013 - - type: manhattan_pearson - value: 85.96155594487269 - - type: manhattan_spearman - value: 86.605909505275 - - task: - type: STS - dataset: - type: mteb/sts16-sts - name: MTEB STS16 - config: default - split: test - revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 - metrics: - - type: cos_sim_pearson - value: 82.14363913634436 - - type: cos_sim_spearman - value: 84.48430226487102 - - type: euclidean_pearson - value: 83.75303424801902 - - type: euclidean_spearman - value: 84.56762380734538 - - type: manhattan_pearson - value: 83.6135447165928 - - type: manhattan_spearman - value: 84.39898212616731 - - task: - type: STS - dataset: - type: mteb/sts17-crosslingual-sts - name: MTEB STS17 (en-en) - config: en-en - split: test - revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d - metrics: - - type: cos_sim_pearson - value: 85.09909252554525 - - type: cos_sim_spearman - value: 85.70951402743276 - - type: euclidean_pearson - value: 87.1991936239908 - - type: euclidean_spearman - value: 86.07745840612071 - - type: manhattan_pearson - value: 87.25039137549952 - - type: manhattan_spearman - value: 85.99938746659761 - - task: - type: STS - dataset: - type: mteb/sts22-crosslingual-sts - name: MTEB STS22 (en) - config: en - split: test - revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 - metrics: - - type: cos_sim_pearson - value: 63.529332093413615 - - type: cos_sim_spearman - value: 65.38177340147439 - - type: euclidean_pearson - value: 66.35278011412136 - - type: euclidean_spearman - value: 65.47147267032997 - - type: manhattan_pearson - value: 66.71804682408693 - - type: manhattan_spearman - value: 65.67406521423597 - - task: - type: STS - dataset: - type: mteb/stsbenchmark-sts - name: MTEB STSBenchmark - config: default - split: test - revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 - metrics: - - type: cos_sim_pearson - value: 82.45802942885662 - - type: cos_sim_spearman - value: 84.8853341842566 - - type: euclidean_pearson - value: 84.60915021096707 - - type: euclidean_spearman - value: 85.11181242913666 - - type: manhattan_pearson - value: 84.38600521210364 - - type: manhattan_spearman - value: 84.89045417981723 - - task: - type: Reranking - dataset: - type: mteb/scidocs-reranking - name: MTEB SciDocsRR - config: default - split: test - revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab - metrics: - - type: map - value: 85.92793380635129 - - type: mrr - value: 95.85834191226348 - - task: - type: Retrieval - dataset: - type: scifact - name: MTEB SciFact - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 55.74400000000001 - - type: map_at_10 - value: 65.455 - - type: map_at_100 - value: 66.106 - - type: map_at_1000 - value: 66.129 - - type: map_at_3 - value: 62.719 - - type: map_at_5 - value: 64.441 - - type: mrr_at_1 - value: 58.667 - - type: mrr_at_10 - value: 66.776 - - type: mrr_at_100 - value: 67.363 - - type: mrr_at_1000 - value: 67.384 - - type: mrr_at_3 - value: 64.889 - - type: mrr_at_5 - value: 66.122 - - type: ndcg_at_1 - value: 58.667 - - type: ndcg_at_10 - value: 69.904 - - type: ndcg_at_100 - value: 72.807 - - type: ndcg_at_1000 - value: 73.423 - - type: ndcg_at_3 - value: 65.405 - - type: ndcg_at_5 - value: 67.86999999999999 - - type: precision_at_1 - value: 58.667 - - type: precision_at_10 - value: 9.3 - - type: precision_at_100 - value: 1.08 - - type: precision_at_1000 - value: 0.11299999999999999 - - type: precision_at_3 - value: 25.444 - - type: precision_at_5 - value: 17 - - type: recall_at_1 - value: 55.74400000000001 - - type: recall_at_10 - value: 82.122 - - type: recall_at_100 - value: 95.167 - - type: recall_at_1000 - value: 100 - - type: recall_at_3 - value: 70.14399999999999 - - type: recall_at_5 - value: 76.417 - - task: - type: PairClassification - dataset: - type: mteb/sprintduplicatequestions-pairclassification - name: MTEB SprintDuplicateQuestions - config: default - split: test - revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 - metrics: - - type: cos_sim_accuracy - value: 99.86534653465347 - - type: cos_sim_ap - value: 96.54142419791388 - - type: cos_sim_f1 - value: 93.07535641547861 - - type: cos_sim_precision - value: 94.81327800829875 - - type: cos_sim_recall - value: 91.4 - - type: dot_accuracy - value: 99.86435643564356 - - type: dot_ap - value: 96.53682260449868 - - type: dot_f1 - value: 92.98515104966718 - - type: dot_precision - value: 95.27806925498426 - - type: dot_recall - value: 90.8 - - type: euclidean_accuracy - value: 99.86336633663366 - - type: euclidean_ap - value: 96.5228676185697 - - type: euclidean_f1 - value: 92.9735234215886 - - type: euclidean_precision - value: 94.70954356846472 - - type: euclidean_recall - value: 91.3 - - type: manhattan_accuracy - value: 99.85841584158416 - - type: manhattan_ap - value: 96.50392760934032 - - type: manhattan_f1 - value: 92.84642321160581 - - type: manhattan_precision - value: 92.8928928928929 - - type: manhattan_recall - value: 92.80000000000001 - - type: max_accuracy - value: 99.86534653465347 - - type: max_ap - value: 96.54142419791388 - - type: max_f1 - value: 93.07535641547861 - - task: - type: Clustering - dataset: - type: mteb/stackexchange-clustering - name: MTEB StackExchangeClustering - config: default - split: test - revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 - metrics: - - type: v_measure - value: 61.08285408766616 - - task: - type: Clustering - dataset: - type: mteb/stackexchange-clustering-p2p - name: MTEB StackExchangeClusteringP2P - config: default - split: test - revision: 815ca46b2622cec33ccafc3735d572c266efdb44 - metrics: - - type: v_measure - value: 35.640675309010604 - - task: - type: Reranking - dataset: - type: mteb/stackoverflowdupquestions-reranking - name: MTEB StackOverflowDupQuestions - config: default - split: test - revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 - metrics: - - type: map - value: 53.20333913710715 - - type: mrr - value: 54.088813555725324 - - task: - type: Summarization - dataset: - type: mteb/summeval - name: MTEB SummEval - config: default - split: test - revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c - metrics: - - type: cos_sim_pearson - value: 30.79465221925075 - - type: cos_sim_spearman - value: 30.530816059163634 - - type: dot_pearson - value: 31.364837244718043 - - type: dot_spearman - value: 30.79726823684003 - - task: - type: Retrieval - dataset: - type: trec-covid - name: MTEB TRECCOVID - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 0.22599999999999998 - - type: map_at_10 - value: 1.735 - - type: map_at_100 - value: 8.978 - - type: map_at_1000 - value: 20.851 - - type: map_at_3 - value: 0.613 - - type: map_at_5 - value: 0.964 - - type: mrr_at_1 - value: 88 - - type: mrr_at_10 - value: 92.867 - - type: mrr_at_100 - value: 92.867 - - type: mrr_at_1000 - value: 92.867 - - type: mrr_at_3 - value: 92.667 - - type: mrr_at_5 - value: 92.667 - - type: ndcg_at_1 - value: 82 - - type: ndcg_at_10 - value: 73.164 - - type: ndcg_at_100 - value: 51.878 - - type: ndcg_at_1000 - value: 44.864 - - type: ndcg_at_3 - value: 79.184 - - type: ndcg_at_5 - value: 76.39 - - type: precision_at_1 - value: 88 - - type: precision_at_10 - value: 76.2 - - type: precision_at_100 - value: 52.459999999999994 - - type: precision_at_1000 - value: 19.692 - - type: precision_at_3 - value: 82.667 - - type: precision_at_5 - value: 80 - - type: recall_at_1 - value: 0.22599999999999998 - - type: recall_at_10 - value: 1.942 - - type: recall_at_100 - value: 12.342 - - type: recall_at_1000 - value: 41.42 - - type: recall_at_3 - value: 0.637 - - type: recall_at_5 - value: 1.034 - - task: - type: Retrieval - dataset: - type: webis-touche2020 - name: MTEB Touche2020 - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 3.567 - - type: map_at_10 - value: 13.116 - - type: map_at_100 - value: 19.39 - - type: map_at_1000 - value: 20.988 - - type: map_at_3 - value: 7.109 - - type: map_at_5 - value: 9.950000000000001 - - type: mrr_at_1 - value: 42.857 - - type: mrr_at_10 - value: 57.404999999999994 - - type: mrr_at_100 - value: 58.021 - - type: mrr_at_1000 - value: 58.021 - - type: mrr_at_3 - value: 54.762 - - type: mrr_at_5 - value: 56.19 - - type: ndcg_at_1 - value: 38.775999999999996 - - type: ndcg_at_10 - value: 30.359 - - type: ndcg_at_100 - value: 41.284 - - type: ndcg_at_1000 - value: 52.30200000000001 - - type: ndcg_at_3 - value: 36.744 - - type: ndcg_at_5 - value: 34.326 - - type: precision_at_1 - value: 42.857 - - type: precision_at_10 - value: 26.122 - - type: precision_at_100 - value: 8.082 - - type: precision_at_1000 - value: 1.559 - - type: precision_at_3 - value: 40.136 - - type: precision_at_5 - value: 35.510000000000005 - - type: recall_at_1 - value: 3.567 - - type: recall_at_10 - value: 19.045 - - type: recall_at_100 - value: 49.979 - - type: recall_at_1000 - value: 84.206 - - type: recall_at_3 - value: 8.52 - - type: recall_at_5 - value: 13.103000000000002 - - task: - type: Classification - dataset: - type: mteb/toxic_conversations_50k - name: MTEB ToxicConversationsClassification - config: default - split: test - revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c - metrics: - - type: accuracy - value: 68.8394 - - type: ap - value: 13.454399712443099 - - type: f1 - value: 53.04963076364322 - - task: - type: Classification - dataset: - type: mteb/tweet_sentiment_extraction - name: MTEB TweetSentimentExtractionClassification - config: default - split: test - revision: d604517c81ca91fe16a244d1248fc021f9ecee7a - metrics: - - type: accuracy - value: 60.546123372948514 - - type: f1 - value: 60.86952793277713 - - task: - type: Clustering - dataset: - type: mteb/twentynewsgroups-clustering - name: MTEB TwentyNewsgroupsClustering - config: default - split: test - revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 - metrics: - - type: v_measure - value: 49.10042955060234 - - task: - type: PairClassification - dataset: - type: mteb/twittersemeval2015-pairclassification - name: MTEB TwitterSemEval2015 - config: default - split: test - revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 - metrics: - - type: cos_sim_accuracy - value: 85.03308100375514 - - type: cos_sim_ap - value: 71.08284605869684 - - type: cos_sim_f1 - value: 65.42539436255494 - - type: cos_sim_precision - value: 64.14807302231237 - - type: cos_sim_recall - value: 66.75461741424802 - - type: dot_accuracy - value: 84.68736961316088 - - type: dot_ap - value: 69.20524036530992 - - type: dot_f1 - value: 63.54893953365829 - - type: dot_precision - value: 63.45698500394633 - - type: dot_recall - value: 63.641160949868066 - - type: euclidean_accuracy - value: 85.07480479227513 - - type: euclidean_ap - value: 71.14592761009864 - - type: euclidean_f1 - value: 65.43814432989691 - - type: euclidean_precision - value: 63.95465994962216 - - type: euclidean_recall - value: 66.99208443271768 - - type: manhattan_accuracy - value: 85.06288370984085 - - type: manhattan_ap - value: 71.07289742593868 - - type: manhattan_f1 - value: 65.37585421412301 - - type: manhattan_precision - value: 62.816147859922175 - - type: manhattan_recall - value: 68.15303430079156 - - type: max_accuracy - value: 85.07480479227513 - - type: max_ap - value: 71.14592761009864 - - type: max_f1 - value: 65.43814432989691 - - task: - type: PairClassification - dataset: - type: mteb/twitterurlcorpus-pairclassification - name: MTEB TwitterURLCorpus - config: default - split: test - revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf - metrics: - - type: cos_sim_accuracy - value: 87.79058485659952 - - type: cos_sim_ap - value: 83.7183187008759 - - type: cos_sim_f1 - value: 75.86921142180798 - - type: cos_sim_precision - value: 73.00683371298405 - - type: cos_sim_recall - value: 78.96519864490298 - - type: dot_accuracy - value: 87.0085768618776 - - type: dot_ap - value: 81.87467488474279 - - type: dot_f1 - value: 74.04188363990559 - - type: dot_precision - value: 72.10507114191901 - - type: dot_recall - value: 76.08561749307053 - - type: euclidean_accuracy - value: 87.8332751193387 - - type: euclidean_ap - value: 83.83585648120315 - - type: euclidean_f1 - value: 76.02582177042369 - - type: euclidean_precision - value: 73.36388371759989 - - type: euclidean_recall - value: 78.88820449645827 - - type: manhattan_accuracy - value: 87.87208444910156 - - type: manhattan_ap - value: 83.8101950642973 - - type: manhattan_f1 - value: 75.90454195535027 - - type: manhattan_precision - value: 72.44419564761039 - - type: manhattan_recall - value: 79.71204188481676 - - type: max_accuracy - value: 87.87208444910156 - - type: max_ap - value: 83.83585648120315 - - type: max_f1 - value: 76.02582177042369 +- openvino license: mit language: - en +base_model: +- BAAI/bge-small-en +base_model_relation: quantized --- - - -**Recommend switching to newest [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5), which has more reasonable similarity distribution and same method of usage.** - -
- Model List | - FAQ | - Usage | - Evaluation | - Train | - Citation | - License -
-
-
-More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
-
-
-[English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
-
-FlagEmbedding focus on retrieval-augmented LLMs, consisting of following projects currently:
-
-- **Fine-tuning of LM** : [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail)
-- **Dense Retrieval**: [LLM Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), [BGE Embedding](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding), [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB)
-- **Reranker Model**: [BGE Reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker)
-
-
-## News
-
-- 11/23/2023: Release [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail), a method to maintain general capabilities during fine-tuning by merging multiple language models. [Technical Report](https://arxiv.org/abs/2311.13534) :fire:
-- 10/12/2023: Release [LLM-Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), a unified embedding model to support diverse retrieval augmentation needs for LLMs. [Technical Report](https://arxiv.org/pdf/2310.07554.pdf)
-- 09/15/2023: The [technical report](https://arxiv.org/pdf/2309.07597.pdf) of BGE has been released
-- 09/15/2023: The [massive training data](https://data.baai.ac.cn/details/BAAI-MTP) of BGE has been released
-- 09/12/2023: New models:
- - **New reranker model**: release cross-encoder models `BAAI/bge-reranker-base` and `BAAI/bge-reranker-large`, which are more powerful than embedding model. We recommend to use/fine-tune them to re-rank top-k documents returned by embedding models.
- - **update embedding model**: release `bge-*-v1.5` embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction.
-
-
-More
-
-
-- 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning.
-- 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard).
-- 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
-- 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada:
-- 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
-
-1. How to fine-tune bge embedding model?
-
-
-Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model.
-Some suggestions:
-- Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#hard-negatives), which can improve the retrieval performance.
-- If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity.
-- If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results. Hard negatives also are needed to fine-tune reranker.
-
-
-2. The similarity score between two dissimilar sentences is higher than 0.5
-
-
-**Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.**
-
-Since we finetune the models by contrastive learning with a temperature of 0.01,
-the similarity distribution of the current BGE model is about in the interval \[0.6, 1\].
-So a similarity score greater than 0.5 does not indicate that the two sentences are similar.
-
-For downstream tasks, such as passage retrieval or semantic similarity,
-**what matters is the relative order of the scores, not the absolute value.**
-If you need to filter similar sentences based on a similarity threshold,
-please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9).
-
-3. When does the query instruction need to be used
-
-
-
-For the `bge-*-v1.5`, we improve its retrieval ability when not using instruction.
-No instruction only has a slight degradation in retrieval performance compared with using instruction.
-So you can generate embedding without instruction in all cases for convenience.
-
-For a retrieval task that uses short queries to find long related documents,
-it is recommended to add instructions for these short queries.
-**The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.**
-In all cases, the documents/passages do not need to add the instruction.
-
-
+ Model List | + FAQ | + Usage | + Evaluation | + Train | + Citation | + License +
+
+
+More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
+
+
+[English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
+
+FlagEmbedding focus on retrieval-augmented LLMs, consisting of following projects currently:
+
+- **Fine-tuning of LM** : [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail)
+- **Dense Retrieval**: [LLM Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), [BGE Embedding](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding), [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB)
+- **Reranker Model**: [BGE Reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker)
+
+
+## News
+
+- 11/23/2023: Release [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail), a method to maintain general capabilities during fine-tuning by merging multiple language models. [Technical Report](https://arxiv.org/abs/2311.13534) :fire:
+- 10/12/2023: Release [LLM-Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), a unified embedding model to support diverse retrieval augmentation needs for LLMs. [Technical Report](https://arxiv.org/pdf/2310.07554.pdf)
+- 09/15/2023: The [technical report](https://arxiv.org/pdf/2309.07597.pdf) of BGE has been released
+- 09/15/2023: The [massive training data](https://data.baai.ac.cn/details/BAAI-MTP) of BGE has been released
+- 09/12/2023: New models:
+ - **New reranker model**: release cross-encoder models `BAAI/bge-reranker-base` and `BAAI/bge-reranker-large`, which are more powerful than embedding model. We recommend to use/fine-tune them to re-rank top-k documents returned by embedding models.
+ - **update embedding model**: release `bge-*-v1.5` embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction.
+
+
+More
+
+
+- 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning.
+- 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard).
+- 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
+- 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada:
+- 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
+
+1. How to fine-tune bge embedding model?
+
+
+Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model.
+Some suggestions:
+- Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#hard-negatives), which can improve the retrieval performance.
+- If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity.
+- If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results. Hard negatives also are needed to fine-tune reranker.
+
+
+2. The similarity score between two dissimilar sentences is higher than 0.5
+
+
+**Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.**
+
+Since we finetune the models by contrastive learning with a temperature of 0.01,
+the similarity distribution of the current BGE model is about in the interval \[0.6, 1\].
+So a similarity score greater than 0.5 does not indicate that the two sentences are similar.
+
+For downstream tasks, such as passage retrieval or semantic similarity,
+**what matters is the relative order of the scores, not the absolute value.**
+If you need to filter similar sentences based on a similarity threshold,
+please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9).
+
+3. When does the query instruction need to be used
+
+
+
+For the `bge-*-v1.5`, we improve its retrieval ability when not using instruction.
+No instruction only has a slight degradation in retrieval performance compared with using instruction.
+So you can generate embedding without instruction in all cases for convenience.
+
+For a retrieval task that uses short queries to find long related documents,
+it is recommended to add instructions for these short queries.
+**The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.**
+In all cases, the documents/passages do not need to add the instruction.
+
+