Bohr commited on
Commit
0ac04fe
·
verified ·
1 Parent(s): 4793839

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - zh
5
+ - en
6
+ tags:
7
+ - prompt refinement
8
+ ---
9
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/62aba5ebab9ed4f63c36b1e2/VA_IEJWR4RA1iApoZrZcK.png" alt="image/png" style="transform: scale(0.6);">
10
+
11
+ ## 📖 Introduction
12
+
13
+ **Qwen2-7B-Instruct-Refine** and **Qwen2-1.5B-Instruct-Refine** are two powerful large language models that act as proficient prompt engineers. They can optimize and refine the prompts input by users, and the generated optimized instructions can significantly enhance the LLM's ability to produce better and more informative responses for users.
14
+
15
+ ## 🚀 Quick Start
16
+
17
+ Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
18
+
19
+ ```python
20
+ from transformers import AutoModelForCausalLM, AutoTokenizer
21
+ device = "cuda" # the device to load the model onto
22
+
23
+ model = AutoModelForCausalLM.from_pretrained(
24
+ "alibaba-pai/Qwen2-1.5B-Instruct-Refine",
25
+ torch_dtype="auto",
26
+ device_map="auto"
27
+ )
28
+ tokenizer = AutoTokenizer.from_pretrained("alibaba-pai/Qwen2-1.5B-Instruct-Refine")
29
+
30
+ prompt = "Give me a short introduction to large language model."
31
+ messages = [
32
+ {"role": "user", "content": prompt}
33
+ ]
34
+ text = tokenizer.apply_chat_template(
35
+ messages,
36
+ tokenize=False,
37
+ add_generation_prompt=True
38
+ )
39
+ model_inputs = tokenizer([text], return_tensors="pt").to(device)
40
+
41
+ generated_ids = model.generate(
42
+ model_inputs.input_ids,
43
+ max_new_tokens=2048,
44
+ eos_token_id=151645,
45
+ )
46
+ generated_ids = [
47
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
48
+ ]
49
+
50
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
51
+ ```
52
+
53
+ ## 🔍 Evaluation
54
+
55
+ | Model | Detail | Truthfulness |
56
+ |------------------------------------|---------|--------------|
57
+ | Qwen2-1.5B-Instruct | 50.00% | 50.00% |
58
+ | + Qwen2-1.5B-Instruct-Refine | 75.63% | 63.75% |
59
+ | + Qwen2-7B-Instruct-Refine | 76.56% | 62.19% |
60
+ | Qwen2-7B-Instruct | 50.00% | 50.00% |
61
+ | + Qwen2-1.5B-Instruct-Refine | 70.94% | 57.19% |
62
+ | + Qwen2-7B-Instruct-Refine | 74.69% | 58.44% |
63
+
64
+