File size: 1,956 Bytes
9e91f3a
 
cf959ec
 
 
9e91f3a
 
 
 
 
 
 
 
 
 
 
 
 
 
cf959ec
 
 
 
9e91f3a
 
 
 
 
 
cf959ec
9e91f3a
 
 
 
cf959ec
 
 
9e91f3a
cf959ec
 
 
 
 
 
9e91f3a
 
cf959ec
 
 
 
9e91f3a
cf959ec
 
 
 
9e91f3a
cf959ec
 
9e91f3a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
library_name: transformers
license: apache-2.0
language:
- fa
---

# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->



## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->

This model is Persian Q/A fine-tuned on Google's Gemma open-source model. Users can ask general question from it. It can be used for chatbot applications and fine-tuning for
other datasets.
- **Developed by:** Ali Bidaran
- **Language(s) (NLP):** Farsi
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]



## Uses
This model can be used for developing chatbot applications, Q/A, instruction engineering and fine-tuning with other persian datasets.

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

### Direct Use
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, GemmaTokenizer

model_id = "alibidaran/Gemma2_Farsi"
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16
)


tokenizer = AutoTokenizer.from_pretrained(model_id, token=os.environ['HF_TOKEN'])
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config, device_map={"":0}, token=os.environ['HF_TOKEN'])
prompt = "چند روش برای کاهش چربی بدن ارائه نمایید؟"
text = f"<s> ###Human: {prompt} ###Asistant: "

inputs=tokenizer(text,return_tensors='pt').to('cuda')
with torch.no_grad():
    outputs=model.generate(**inputs,max_new_tokens=400,do_sample=True,top_p=0.99,top_k=10,temperature=0.7)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

```
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->

[More Information Needed]