File size: 1,635 Bytes
e7f49d0
 
76e3ad6
e7f49d0
156bec5
 
76e3ad6
 
e7f49d0
76e3ad6
156bec5
76e3ad6
e7f49d0
76e3ad6
e7f49d0
 
 
 
 
 
76e3ad6
e7f49d0
156bec5
e7f49d0
5ad0f95
e7f49d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76e3ad6
e7f49d0
 
 
 
 
76e3ad6
 
e7f49d0
 
 
76e3ad6
e7f49d0
 
 
 
 
 
5ad0f95
e7f49d0
 
 
 
76e3ad6
 
 
e7f49d0
76e3ad6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
library_name: peft
tags:
- alignment-handbook
- generated_from_trainer
- trl
- sft
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrachat_200k
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: zephyr-7b-sft-qlora
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# zephyr-7b-sft-qlora

This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the HuggingFaceH4/ultrachat_200k dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9502

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.9427        | 1.0   | 2179 | 0.9502          |


### Framework versions

- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.0