File size: 9,322 Bytes
d0262c9
 
ea552c8
 
 
 
 
 
 
9042655
 
 
 
 
d0262c9
 
556bde1
ba9aa9f
d0262c9
 
438d270
9a41170
6c821b6
089b5a5
 
bdc5774
6c821b6
22f2f67
b45cb28
438d270
6c821b6
e87b809
4702d63
 
 
 
 
6c821b6
d0262c9
 
 
 
 
b42b795
d0262c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48e58c0
ce0875c
59259da
d0262c9
ea552c8
ff82110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a47341
ff82110
438d270
 
 
 
 
caeff8c
438d270
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b72f674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea552c8
 
7c94a66
9042655
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
---
license: apache-2.0
language:
- en
base_model:
- openai/clip-vit-large-patch14-336
- Qwen/Qwen2-7B
pipeline_tag: image-text-to-text
tags:
- multimodal
- olmo
- molmo
- pixmo
library_name: transformers
---

<img src="molmo_logo.png" alt="Logo for the Molmo Project" style="width: auto; height: 50px;">

# Molmo 7B-D

Molmo is a family of open vision-language models developed by the Allen Institute for AI. Molmo models are trained on PixMo, a dataset of 1 million, highly-curated image-text pairs. It has state-of-the-art performance among multimodal models with a similar size while being fully open-source. You can find all models in the Molmo family [here](https://huggingface.co/collections/allenai/molmo-66f379e6fe3b8ef090a8ca19).
**Learn more** about the Molmo family [in our announcement blog post](https://molmo.allenai.org/blog) or the [paper](https://huggingface.co/papers/2409.17146).

Molmo 7B-D is based on [Qwen2-7B](https://huggingface.co/Qwen/Qwen2-7B) and uses [OpenAI CLIP](https://huggingface.co/openai/clip-vit-large-patch14-336) as vision backbone. 
It performs comfortably between GPT-4V and GPT-4o on both academic benchmarks and human evaluation.
It powers the **Molmo demo at** [**molmo.allenai.org**](https://molmo.allenai.org).

This checkpoint is a **preview** of the Molmo release. All artifacts used in creating Molmo (PixMo dataset, training code, evaluations, intermediate checkpoints) will be made available at a later date, furthering our commitment to open-source AI development and reproducibility.

[**Sign up here**](https://docs.google.com/forms/d/e/1FAIpQLSdML1MhNNBDsCHpgWG65Oydg2SjZzVasyqlP08nBrWjZp_c7A/viewform) to be the first to know when artifacts are released.

Quick links:
- πŸ’¬ [Demo](https://molmo.allenai.org/)
- πŸ“‚ [All Models](https://huggingface.co/collections/allenai/molmo-66f379e6fe3b8ef090a8ca19)
- πŸ“ƒ [Paper](https://molmo.allenai.org/paper.pdf)
- πŸŽ₯ [Blog with Videos](https://molmo.allenai.org/blog)


## Quick Start

To run Molmo, first install dependencies:

```bash
pip install einops torchvision
```

Then, follow these steps:

```python
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
from PIL import Image
import requests

# load the processor
processor = AutoProcessor.from_pretrained(
    'allenai/Molmo-7B-D-0924',
    trust_remote_code=True,
    torch_dtype='auto',
    device_map='auto'
)

# load the model
model = AutoModelForCausalLM.from_pretrained(
    'allenai/Molmo-7B-D-0924',
    trust_remote_code=True,
    torch_dtype='auto',
    device_map='auto'
)

# process the image and text
inputs = processor.process(
    images=[Image.open(requests.get("https://picsum.photos/id/237/536/354", stream=True).raw)],
    text="Describe this image."
)

# move inputs to the correct device and make a batch of size 1
inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()}

# generate output; maximum 200 new tokens; stop generation when <|endoftext|> is generated
output = model.generate_from_batch(
    inputs,
    GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"),
    tokenizer=processor.tokenizer
)

# only get generated tokens; decode them to text
generated_tokens = output[0,inputs['input_ids'].size(1):]
generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)

# print the generated text
print(generated_text)

# >>>  This image features an adorable black Labrador puppy, captured from a top-down
#      perspective. The puppy is sitting on a wooden deck, which is composed ...
```

To make inference more efficient, run with autocast:

```python
with torch.autocast(device_type="cuda", enabled=True, dtype=torch.bfloat16):
  output = model.generate_from_batch(
      inputs,
      GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"),
      tokenizer=processor.tokenizer
  )
```

We did most of our evaluation in this setting (autocast on, but float32 weights)

To even further reduce the memory requirements, the model can be run with bfloat16 weights:

```python
model.to(dtype=torch.bfloat16)
inputs["images"] = inputs["images"].to(torch.bfloat16)
output = model.generate_from_batch(
    inputs,
    GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"),
    tokenizer=processor.tokenizer
)
```

Note that we have observed that this can change the output of the model compared to running with float32 weights.

## Evaluations 

| Model                       | Average Score on 11 Academic Benchmarks | Human Preference Elo Rating |
|-----------------------------|-----------------------------------------|-----------------------------|
| Molmo 72B                   | 81.2                                    | 1077                        |
| **Molmo 7B-D (this model)** | **77.3**                                | **1056**                    |
| Molmo 7B-O                  | 74.6                                    | 1051                        |
| MolmoE 1B                   | 68.6                                    | 1032                        |
| GPT-4o                      | 78.5                                    | 1079                        |
| GPT-4V                      | 71.1                                    | 1041                        |
| Gemini 1.5 Pro              | 78.3                                    | 1074                        |
| Gemini 1.5 Flash            | 75.1                                    | 1054                        |
| Claude 3.5 Sonnet           | 76.7                                    | 1069                        |
| Claude 3 Opus               | 66.4                                    |  971                        |
| Claude 3 Haiku              | 65.3                                    |  999                        |
| Qwen VL2 72B                | 79.4                                    | 1037                        |
| Qwen VL2 7B                 | 73.7                                    | 1025                        |
| Intern VL2 LLAMA 76B        | 77.1                                    | 1018                        |
| Intern VL2 8B               | 69.4                                    |  953                        |
| Pixtral 12B                 | 69.5                                    | 1016                        |
| Phi3.5-Vision 4B            | 59.7                                    |  982                        |
| PaliGemma 3B                | 50.0                                    |  937                        |
| LLAVA OneVision 72B         | 76.6                                    | 1051                        |
| LLAVA OneVision 7B          | 72.0                                    | 1024                        |
| Cambrian-1 34B              | 66.8                                    |  953                        |
| Cambrian-1 8B               | 63.4                                    |  952                        |
| xGen - MM - Interleave 4B   | 59.5                                    |  979                        |
| LLAVA-1.5 13B               | 43.9                                    |  960                        |
| LLAVA-1.5 7B                | 40.7                                    |  951                        |

*Benchmarks: AI2D test, ChartQA test, VQA v2.0 test, DocQA test, InfographicVQA test, TextVQA val, RealWorldQA, MMMU val, MathVista testmini, CountBenchQA, Flickr Count (we collected this new dataset that is significantly harder than CountBenchQA).*

## FAQs

### I'm getting an error a broadcast error when processing images!

Your image might not be in RGB format. You can convert it using the following code snippet:

```python
from PIL import Image

image = Image.open(...)

if image.mode != "RGB":
    image = image.convert("RGB")
```

### Molmo doesn't work great with transparent images!

We received reports that Molmo models might struggle with transparent images. 
For the time being, we recommend adding a white or dark background to your images before passing them to the model. The code snippet below shows how to do this using the Python Imaging Library (PIL):

```python

# Load the image
url = "..."
image = Image.open(requests.get(url, stream=True).raw)

# Convert the image to grayscale to calculate brightness
gray_image = image.convert('L')  # Convert to grayscale

# Calculate the average brightness
stat = ImageStat.Stat(gray_image)
average_brightness = stat.mean[0]  # Get the average value

# Define background color based on brightness (threshold can be adjusted)
bg_color = (0, 0, 0) if average_brightness > 127 else (255, 255, 255)

# Create a new image with the same size as the original, filled with the background color
new_image = Image.new('RGB', image.size, bg_color)

# Paste the original image on top of the background (use image as a mask if needed)
new_image.paste(image, (0, 0), image if image.mode == 'RGBA' else None)

# Now you can pass the new_image to Molmo
processor = AutoProcessor.from_pretrained(
    'allenai/Molmo-7B-D-0924',
    trust_remote_code=True,
    torch_dtype='auto',
    device_map='auto'
)
```

## License and Use

This model is licensed under Apache 2.0. It is intended for research and educational use.
For more information, please see our [Responsible Use Guidelines](https://allenai.org/responsible-use).