|
""" |
|
Adapted from |
|
[MosaiclML](https://github.com/mosaicml/examples.git) and |
|
[minGPT](https://github.com/karpathy/minGPT.git) |
|
""" |
|
|
|
from __future__ import annotations |
|
|
|
import logging |
|
import math |
|
import sys |
|
import time |
|
from abc import abstractmethod |
|
from collections import defaultdict |
|
from dataclasses import replace |
|
from functools import partial |
|
from os.path import join |
|
from pathlib import Path |
|
from typing import ( |
|
Callable, |
|
Dict, |
|
Iterable, |
|
List, |
|
NamedTuple, |
|
Optional, |
|
Sequence, |
|
Set, |
|
Tuple, |
|
cast, |
|
Union, |
|
) |
|
from copy import deepcopy |
|
import torch |
|
import torch.backends.cuda |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch import einsum |
|
import einops |
|
from transformers import PreTrainedModel |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
|
|
from olmo.aliases import PathOrStr |
|
from olmo.beam_search import ( |
|
BeamSearch, |
|
Constraint, |
|
FinalSequenceScorer, |
|
Sampler |
|
) |
|
from olmo.config import ( |
|
ActivationType, |
|
BlockType, |
|
LayerNormType, |
|
VisionBackboneType, |
|
ImagePooling2DType, |
|
ImageProjectType, |
|
AttentionType, |
|
) |
|
|
|
from olmo.util import resource_path |
|
from .config_molmoe import ( |
|
MolmoConfig, |
|
VisionBackboneConfig |
|
) |
|
|
|
if sys.version_info.minor > 8: |
|
from collections.abc import MutableMapping |
|
elif sys.version_info.minor == 8: |
|
from typing import MutableMapping |
|
else: |
|
raise SystemExit("This script supports Python 3.8 or higher") |
|
|
|
__all__ = [ |
|
"LayerNormBase", |
|
"LayerNorm", |
|
"RMSLayerNorm", |
|
"RotaryEmbedding", |
|
"Activation", |
|
"GELU", |
|
"ReLU", |
|
"SwiGLU", |
|
"OLMoBlock", |
|
"OLMoSequentialBlock", |
|
"OLMo", |
|
"OLMoOutput", |
|
"OLMoGenerateOutput", |
|
] |
|
|
|
|
|
log = logging.getLogger(__name__) |
|
|
|
|
|
def activation_checkpoint_function(cfg: ModelConfig): |
|
preserve_rng_state = not ( |
|
(cfg.attention_dropout == 0.0) and (cfg.embedding_dropout == 0.0) and |
|
(cfg.residual_dropout == 0.0) and (cfg.response_residual_dropout == 0.0) |
|
) |
|
from torch.utils.checkpoint import checkpoint |
|
|
|
return partial( |
|
checkpoint, |
|
preserve_rng_state=True, |
|
use_reentrant=False, |
|
) |
|
|
|
|
|
def ensure_finite_(x: torch.Tensor, check_neg_inf: bool = True, check_pos_inf: bool = False): |
|
""" |
|
Modify ``x`` in place to replace ``float("-inf")`` with the minimum value of the dtype when ``check_neg_inf`` |
|
is ``True`` and to replace ``float("inf")`` with the maximum value of the dtype when ``check_pos_inf`` is ``True``. |
|
""" |
|
if check_neg_inf: |
|
x.masked_fill_(x == float("-inf"), torch.finfo(x.dtype).min) |
|
if check_pos_inf: |
|
x.masked_fill_(x == float("inf"), torch.finfo(x.dtype).max) |
|
|
|
|
|
def activation_checkpoint_function(cfg: MolmoConfig): |
|
preserve_rng_state = not ( |
|
(cfg.attention_dropout == 0.0) and (cfg.embedding_dropout == 0.0) and |
|
(cfg.residual_dropout == 0.0) and (cfg.response_residual_dropout == 0.0) |
|
) |
|
from torch.utils.checkpoint import checkpoint |
|
|
|
return partial( |
|
checkpoint, |
|
preserve_rng_state=True, |
|
use_reentrant=False, |
|
) |
|
|
|
|
|
def vit_activation_checkpoint_function(cfg: MolmoConfig): |
|
v_cfg = cfg.vision_backbone |
|
preserve_rng_state = ( |
|
(v_cfg.attention_dropout == 0.0) and (v_cfg.residual_dropout == 0.0) |
|
) |
|
from torch.utils.checkpoint import checkpoint |
|
|
|
return partial( |
|
checkpoint, |
|
preserve_rng_state=preserve_rng_state, |
|
use_reentrant=False, |
|
) |
|
|
|
|
|
def should_checkpoint_block(strategy: Optional[ActivationCheckpointingStrategy], block_idx: int) -> bool: |
|
if strategy is None: |
|
return False |
|
elif ( |
|
(strategy == ActivationCheckpointingStrategy.whole_layer) |
|
or (strategy == ActivationCheckpointingStrategy.one_in_two and block_idx % 2 == 0) |
|
or (strategy == ActivationCheckpointingStrategy.one_in_three and block_idx % 3 == 0) |
|
or (strategy == ActivationCheckpointingStrategy.one_in_four and block_idx % 4 == 0) |
|
or (strategy == ActivationCheckpointingStrategy.two_in_three and block_idx % 3 != 0) |
|
or (strategy == ActivationCheckpointingStrategy.three_in_four and block_idx % 4 != 0) |
|
): |
|
return True |
|
else: |
|
return False |
|
|
|
|
|
class BufferCache(dict, MutableMapping[str, torch.Tensor]): |
|
""" |
|
Cache for attention biases and other things that would normally be stored as buffers. |
|
We avoid using buffers because we've run into various issues doing so with FSDP. |
|
In general it appears the way FSDP handles buffers is not well-defined. |
|
It doesn't shard them but apparently it does synchronize them across processes, which we want to avoid |
|
since (A) it isn't necessary, and (B) we sometimes have `-inf` in these biases which might get turned into |
|
NaNs when they're synchronized due to casting or some other issue. |
|
""" |
|
|
|
|
|
def _non_meta_init_device(config: MolmoConfig) -> torch.device: |
|
if config.init_device is not None and config.init_device != "meta": |
|
return torch.device(config.init_device) |
|
else: |
|
return torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
class Embedding(nn.Module): |
|
def __init__( |
|
self, |
|
num_embeddings: int, |
|
num_new_embeddings: int, |
|
features: int, |
|
device: Union[str, torch.device], |
|
initializer_range: float = 0.02, |
|
new_embed_initializer_range: float = 0.02, |
|
): |
|
super().__init__() |
|
self.initializer_range = initializer_range |
|
self.new_embed_initializer_range = new_embed_initializer_range |
|
self.embedding = nn.Parameter( |
|
torch.zeros(num_embeddings, features, device=device), |
|
) |
|
self.new_embedding = nn.Parameter( |
|
torch.zeros(num_new_embeddings, features, device=device), |
|
) |
|
|
|
def reset_parameters(self): |
|
nn.init.normal_(self.embedding, std=self.initializer_range) |
|
nn.init.normal_(self.new_embedding, std=self.new_embed_initializer_range) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
return F.embedding(x, torch.cat([self.embedding, self.new_embedding], dim=0)) |
|
|
|
|
|
class Dropout(nn.Dropout): |
|
def __init__( |
|
self, |
|
p: float = 0.5, |
|
inplace: bool = False, |
|
mask_p: float = 0, |
|
broadcast_dims: Sequence[int] = (), |
|
): |
|
super().__init__(p, inplace) |
|
self.mask_p = mask_p |
|
self.broadcast_dims = broadcast_dims |
|
|
|
def forward(self, input: torch.Tensor, drop_mask: Optional[torch.Tensor] = None) -> torch.Tensor: |
|
""" |
|
:param input: A tensor of shape `(batch_size, seq_len, embed_dim)` |
|
:param drop_mask: A tensor of shape `(batch_size, seq_len)` with values of zero or one. |
|
""" |
|
if self.p == 0.0 and (self.mask_p is None or self.mask_p == 0.0): |
|
return input |
|
else: |
|
if self.mask_p > 0. and self.training: |
|
assert drop_mask is not None |
|
drop_mask = drop_mask.to(input.dtype) |
|
keep_prob = 1.0 - self.p |
|
keep_prob2 = 1.0 - self.mask_p |
|
keep_prob = drop_mask * keep_prob2 + (1 - drop_mask) * keep_prob |
|
keep_prob = keep_prob.unsqueeze(-1) |
|
dropout_shape = list(input.shape) |
|
keep_prob = keep_prob.broadcast_to(dropout_shape) |
|
multiplier = input.new_empty(dropout_shape).bernoulli_(keep_prob) |
|
multiplier.div_(keep_prob) |
|
return input * multiplier |
|
elif self.p > 0. and len(self.broadcast_dims) > 0 and self.training: |
|
keep_prob = 1.0 - self.p |
|
dropout_shape = list(input.shape) |
|
for dim in self.broadcast_dims: |
|
dropout_shape[dim] = 1 |
|
keep = input.new_empty(dropout_shape).bernoulli_(keep_prob) |
|
multiplier = keep.broadcast_to(input.shape) |
|
multiplier.div_(keep_prob) |
|
input = input * multiplier |
|
else: |
|
return F.dropout(input, self.p, self.training, self.inplace) |
|
|
|
|
|
class LayerNormBase(nn.Module): |
|
def __init__( |
|
self, |
|
config: MolmoConfig, |
|
*, |
|
size: Optional[int] = None, |
|
elementwise_affine: Optional[bool] = True, |
|
eps: float = 1e-05, |
|
weight_initializer: Optional[Callable] = torch.ones, |
|
bias_initializer: Optional[Callable] = torch.zeros, |
|
): |
|
super().__init__() |
|
self.config = config |
|
self.eps = self.config.layer_norm_eps or eps |
|
self.normalized_shape = (size or config.d_model,) |
|
if elementwise_affine or (elementwise_affine is None and self.config.layer_norm_with_affine): |
|
self.weight = nn.Parameter(weight_initializer(self.normalized_shape, device=config.init_device)) |
|
use_bias = self.config.bias_for_layer_norm |
|
if use_bias is None: |
|
use_bias = self.config.include_bias |
|
if use_bias: |
|
self.bias = nn.Parameter(bias_initializer(self.normalized_shape, device=config.init_device)) |
|
else: |
|
self.register_parameter("bias", None) |
|
else: |
|
self.register_parameter("bias", None) |
|
self.register_parameter("weight", None) |
|
|
|
|
|
class LayerNorm(LayerNormBase): |
|
""" |
|
The default :class:`LayerNorm` implementation which can optionally run in low precision. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
config: MolmoConfig, |
|
size: Optional[int] = None, |
|
low_precision: bool = False, |
|
elementwise_affine: Optional[bool] = None, |
|
eps: float = 1e-05, |
|
): |
|
super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps) |
|
self.low_precision = low_precision |
|
|
|
def _cast_if_autocast_enabled(self, tensor: torch.Tensor, dtype: Optional[torch.dtype] = None) -> torch.Tensor: |
|
|
|
|
|
|
|
if tensor.device.type == "cuda" and torch.is_autocast_enabled(): |
|
return tensor.to(dtype=dtype if dtype is not None else torch.get_autocast_gpu_dtype()) |
|
elif tensor.device.type == "cpu" and torch.is_autocast_cpu_enabled(): |
|
return tensor.to(dtype=dtype if dtype is not None else torch.get_autocast_cpu_dtype()) |
|
else: |
|
return tensor |
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
if self.low_precision: |
|
module_device = x.device |
|
downcast_x = self._cast_if_autocast_enabled(x) |
|
downcast_weight = ( |
|
self._cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight |
|
) |
|
downcast_bias = self._cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias |
|
with torch.autocast(enabled=False, device_type=module_device.type): |
|
return F.layer_norm( |
|
downcast_x, self.normalized_shape, weight=downcast_weight, bias=downcast_bias, eps=self.eps |
|
) |
|
else: |
|
return F.layer_norm(x, self.normalized_shape, weight=self.weight, bias=self.bias, eps=self.eps) |
|
|
|
def reset_parameters(self): |
|
if self.weight is not None: |
|
torch.nn.init.ones_(self.weight) |
|
if self.bias is not None: |
|
torch.nn.init.zeros_(self.bias) |
|
|
|
|
|
class RMSLayerNorm(LayerNormBase): |
|
""" |
|
RMS layer norm, a simplified :class:`LayerNorm` implementation |
|
""" |
|
def __init__( |
|
self, |
|
config: MolmoConfig, |
|
size: Optional[int] = None, |
|
elementwise_affine: Optional[bool] = None, |
|
eps: float = 1e-5, |
|
): |
|
super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
with torch.autocast(enabled=False, device_type=x.device.type): |
|
og_dtype = x.dtype |
|
x = x.to(torch.float32) |
|
variance = x.pow(2).mean(-1, keepdim=True) |
|
x = x * torch.rsqrt(variance + self.eps) |
|
x = x.to(og_dtype) |
|
|
|
if self.weight is not None: |
|
if self.bias is not None: |
|
return self.weight * x + self.bias |
|
else: |
|
return self.weight * x |
|
else: |
|
return x |
|
|
|
def _cast_if_autocast_enabled(self, tensor: torch.Tensor, dtype: Optional[torch.dtype] = None) -> torch.Tensor: |
|
|
|
|
|
|
|
if tensor.device.type == "cuda" and torch.is_autocast_enabled(): |
|
return tensor.to(dtype=dtype if dtype is not None else torch.get_autocast_gpu_dtype()) |
|
elif tensor.device.type == "cpu" and torch.is_autocast_cpu_enabled(): |
|
return tensor.to(dtype=dtype if dtype is not None else torch.get_autocast_cpu_dtype()) |
|
else: |
|
return tensor |
|
|
|
def reset_parameters(self): |
|
if self.weight is not None: |
|
torch.nn.init.ones_(self.weight) |
|
if self.bias is not None: |
|
torch.nn.init.zeros_(self.bias) |
|
|
|
|
|
class RotaryEmbedding(nn.Module): |
|
""" |
|
[Rotary positional embeddings (RoPE)](https://arxiv.org/abs/2104.09864). |
|
""" |
|
|
|
def __init__(self, config: MolmoConfig, cache: BufferCache): |
|
super().__init__() |
|
self.config = config |
|
self.__cache = cache |
|
|
|
self.get_rotary_embedding( |
|
config.max_position_embeddings or config.max_sequence_length, |
|
_non_meta_init_device(config) |
|
) |
|
|
|
def get_rotary_embedding(self, seq_len: int, device: torch.device) -> Tuple[torch.Tensor, torch.Tensor]: |
|
if ( |
|
(pos_sin := self.__cache.get("rope_pos_sin")) is not None |
|
and (pos_cos := self.__cache.get("rope_pos_cos")) is not None |
|
and pos_sin.shape[-2] >= seq_len |
|
and pos_cos.shape[-2] >= seq_len |
|
): |
|
if pos_sin.device != device: |
|
pos_sin = pos_sin.to(device) |
|
self.__cache["rope_pos_sin"] = pos_sin |
|
if pos_cos.device != device: |
|
pos_cos = pos_cos.to(device) |
|
self.__cache["rope_pos_cos"] = pos_cos |
|
return pos_sin[:, :, :seq_len, :], pos_cos[:, :, :seq_len, :] |
|
|
|
with torch.autocast(device.type, enabled=False): |
|
dim = self.config.head_dim if self.config.head_dim is not None else self.config.d_model // self.config.n_heads |
|
inv_freq = 1.0 / (self.config.rope_theta ** (torch.arange(0, dim, 2, device=device, dtype=torch.float) / dim)) |
|
seq = torch.arange(seq_len, device=device, dtype=torch.float) |
|
freqs = einsum("i , j -> i j", seq, inv_freq) |
|
if self.config.rope_impl == "cockatoo": |
|
positions = freqs.repeat_interleave(2, dim=-1) |
|
else: |
|
positions = torch.cat((freqs, freqs), dim=-1) |
|
pos_sin, pos_cos = positions.sin()[None, None, :, :], positions.cos()[None, None, :, :] |
|
self.__cache["rope_pos_sin"] = pos_sin |
|
self.__cache["rope_pos_cos"] = pos_cos |
|
return pos_sin, pos_cos |
|
|
|
def rotate_half(self, x: torch.Tensor) -> torch.Tensor: |
|
B, nh, T, hs = x.size() |
|
x = x.view(B, nh, T, 2, hs // 2) |
|
x1, x2 = x.unbind(dim=-2) |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
def rotate_every_two(self, x: torch.Tensor) -> torch.Tensor: |
|
B, nh, T, hs = x.size() |
|
x = x.view(B, nh, T, hs // 2, 2) |
|
x1, x2 = x.unbind(dim=-1) |
|
x = torch.stack((-x2, x1), dim=-1) |
|
return x.view(B, nh, T, hs) |
|
|
|
def apply_rotary_pos_emb(self, pos_sin: torch.Tensor, pos_cos: torch.Tensor, t: torch.Tensor) -> torch.Tensor: |
|
if self.config.rope_impl == "cockatoo": |
|
return ((t * pos_cos) + (self.rotate_every_two(t) * pos_sin)).to(t.dtype) |
|
else: |
|
return ((t * pos_cos) + (self.rotate_half(t) * pos_sin)).to(t.dtype) |
|
|
|
def forward( |
|
self, |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
position_ids: Optional[torch.Tensor] = None |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
if self.config.rope_full_precision: |
|
q_, k_ = q.float(), k.float() |
|
else: |
|
q_, k_ = q, k |
|
|
|
with torch.autocast(q.device.type, enabled=False): |
|
batch_size = q_.shape[0] |
|
query_len, key_len = q_.shape[-2], k_.shape[-2] |
|
if position_ids is not None: |
|
freqs_cis_len = (self.config.max_position_embeddings or self.config.max_sequence_length) |
|
else: |
|
freqs_cis_len = key_len |
|
pos_sin, pos_cos = self.get_rotary_embedding(freqs_cis_len, q_.device) |
|
pos_sin = pos_sin.type_as(q_) |
|
pos_cos = pos_cos.type_as(q_) |
|
if position_ids is not None: |
|
assert query_len == key_len, "Query and key lengths must be equal when using position IDs." |
|
pos_sin = pos_sin[0, 0][position_ids].view( |
|
(batch_size, 1, key_len, pos_sin.shape[-1]) |
|
) |
|
pos_cos = pos_cos[0, 0][position_ids].view( |
|
(batch_size, 1, key_len, pos_cos.shape[-1]) |
|
) |
|
q_ = self.apply_rotary_pos_emb( |
|
pos_sin[:, :, key_len - query_len : key_len, :], |
|
pos_cos[:, :, key_len - query_len : key_len, :], |
|
q_, |
|
) |
|
k_ = self.apply_rotary_pos_emb(pos_sin, pos_cos, k_) |
|
return q_.type_as(q), k_.type_as(k) |
|
|
|
|
|
class Activation(nn.Module): |
|
def __init__(self, config: MolmoConfig): |
|
super().__init__() |
|
self.config = config |
|
|
|
@abstractmethod |
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
raise NotImplementedError |
|
|
|
@property |
|
@abstractmethod |
|
def output_multiplier(self) -> float: |
|
raise NotImplementedError |
|
|
|
|
|
class GELU(nn.GELU): |
|
@property |
|
def output_multiplier(self) -> float: |
|
return 1.0 |
|
|
|
|
|
class QuickGELU(Activation): |
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
return x * torch.sigmoid(1.702 * x) |
|
|
|
@property |
|
def output_multiplier(self) -> float: |
|
return 1.0 |
|
|
|
|
|
class ReLU(nn.ReLU): |
|
@property |
|
def output_multiplier(self) -> float: |
|
return 1.0 |
|
|
|
|
|
class SiLU(nn.SiLU): |
|
@property |
|
def output_multiplier(self) -> float: |
|
return 1.0 |
|
|
|
|
|
class SwiGLU(Activation): |
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x, gate = x.chunk(2, dim=-1) |
|
return F.silu(gate) * x |
|
|
|
@property |
|
def output_multiplier(self) -> float: |
|
return 0.5 |
|
|
|
|
|
class LlamaSwiGLU(Activation): |
|
def forward(self, x1: torch.Tensor, x2: torch.Tensor) -> torch.Tensor: |
|
return F.silu(x1) * x2 |
|
|
|
@property |
|
def output_multiplier(self) -> float: |
|
return 0.5 |
|
|
|
|
|
def causal_attention_bias(seq_len: int, device: torch.device) -> torch.FloatTensor: |
|
att_bias = torch.triu( |
|
torch.ones(seq_len, seq_len, device=device, dtype=torch.float), |
|
diagonal=1, |
|
) |
|
att_bias.masked_fill_(att_bias == 1, torch.finfo(att_bias.dtype).min) |
|
return att_bias.view(1, 1, seq_len, seq_len) |
|
|
|
|
|
def get_causal_attention_bias(cache: BufferCache, seq_len: int, device: torch.device) -> torch.Tensor: |
|
if (causal_bias := cache.get("causal_attention_bias")) is not None and causal_bias.shape[-1] >= seq_len: |
|
if causal_bias.device != device: |
|
causal_bias = causal_bias.to(device) |
|
cache["causal_attention_bias"] = causal_bias |
|
return causal_bias |
|
with torch.autocast(device.type, enabled=False): |
|
causal_bias = causal_attention_bias(seq_len, device) |
|
cache["causal_attention_bias"] = causal_bias |
|
return causal_bias |
|
|
|
|
|
class MolmoAttention(nn.Module): |
|
def __init__( |
|
self, |
|
config: MolmoConfig, |
|
cache: BufferCache |
|
): |
|
super().__init__() |
|
self.config = config |
|
self.__cache = cache |
|
self.rotary_emb = RotaryEmbedding(config, self.__cache) |
|
self.k_norm: Optional[LayerNormBase] = None |
|
self.q_norm: Optional[LayerNormBase] = None |
|
self.hidden_size = ( |
|
config.mlp_hidden_size if config.mlp_hidden_size is not None \ |
|
else config.mlp_ratio * config.d_model |
|
) |
|
|
|
if config.attention_layer_norm: |
|
if config.n_kv_heads is None: |
|
config.n_kv_heads = config.n_heads |
|
self.q_norm = RMSLayerNorm( |
|
config, |
|
size=config.d_model, |
|
eps=config.layer_norm_eps |
|
) |
|
self.k_norm = RMSLayerNorm( |
|
config, |
|
size=config.d_model, |
|
eps=config.layer_norm_eps |
|
) |
|
|
|
|
|
if config.clip_qkv is not None: |
|
assert config.clip_qkv > 0 |
|
|
|
|
|
self.act = SwiGLU(config) |
|
assert (self.act.output_multiplier * self.hidden_size) % 1 == 0 |
|
|
|
|
|
input_dim = config.head_dim * config.n_heads if config.head_dim is not None else config.d_model |
|
head_dim = config.d_model // config.n_heads |
|
self.fused_dims = ( |
|
config.d_model, |
|
config.n_kv_heads * head_dim, |
|
config.n_kv_heads * head_dim, |
|
) |
|
self.att_proj = nn.Linear( |
|
config.d_model, sum(self.fused_dims), |
|
bias=config.include_bias or config.qkv_bias, |
|
device=config.init_device |
|
) |
|
self.attn_out = nn.Linear( |
|
input_dim, config.d_model, |
|
bias=config.include_bias, |
|
device=config.init_device |
|
) |
|
self.attn_norm = RMSLayerNorm( |
|
config, |
|
size=config.d_model, |
|
eps=config.layer_norm_eps) |
|
|
|
self.flash_attn_func = None |
|
if self.config.attention_type == AttentionType.flash: |
|
try: |
|
from flash_attn import flash_attn_func |
|
self.flash_attn_func = flash_attn_func |
|
except ModuleNotFoundError: |
|
pass |
|
|
|
def attention(self, |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
attention_bias: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
drop_mask: Optional[torch.Tensor] = None, |
|
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
use_cache: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]: |
|
B, T, C = q.size() |
|
dtype = k.dtype |
|
|
|
|
|
if self.q_norm is not None and self.k_norm is not None: |
|
q = self.q_norm(q).to(dtype=dtype) |
|
k = self.k_norm(k).to(dtype=dtype) |
|
|
|
|
|
|
|
q = q.view(B, T, self.config.n_heads, C // self.config.n_heads).transpose(1, 2) |
|
|
|
k = k.view(B, T, self.config.n_kv_heads, C // self.config.n_heads).transpose(1, 2) |
|
|
|
v = v.view(B, T, self.config.n_kv_heads, C // self.config.n_heads).transpose(1, 2) |
|
|
|
if self.config.use_position_ids and self.config.rope: |
|
|
|
q, k = self.rotary_emb(q, k, position_ids=position_ids) |
|
|
|
if layer_past is not None: |
|
past_key, past_value = layer_past |
|
k = torch.cat((past_key.to(k.device), k), dim=-2) |
|
v = torch.cat((past_value.to(v.device), v), dim=-2) |
|
|
|
present = (k, v) if use_cache else None |
|
query_len, key_len = q.shape[-2], k.shape[-2] |
|
|
|
if not self.config.use_position_ids and self.config.rope: |
|
|
|
q, k = self.rotary_emb(q, k) |
|
|
|
if attention_bias is not None: |
|
|
|
|
|
|
|
|
|
|
|
attention_bias = self._cast_attn_bias( |
|
attention_bias[:, :, key_len - query_len : key_len, :key_len], dtype |
|
) |
|
|
|
|
|
|
|
att = self._scaled_dot_product_attention( |
|
q, |
|
k, |
|
v, |
|
attn_mask=attention_bias, |
|
drop_mask=drop_mask, |
|
dropout_p=0.0 if not self.training else self.config.attention_dropout, |
|
response_dropout_p=0.0 if not self.training else self.config.response_attention_dropout, |
|
is_causal=attention_bias is None, |
|
) |
|
|
|
|
|
att = att.transpose(1, 2).contiguous().view(B, T, C) |
|
|
|
|
|
return self.attn_out(att), present |
|
|
|
@classmethod |
|
def _cast_attn_bias(cls, bias: torch.Tensor, input_dtype: torch.dtype) -> torch.Tensor: |
|
target_dtype = input_dtype |
|
|
|
|
|
|
|
if bias.device.type == "cuda" and torch.is_autocast_enabled(): |
|
target_dtype = torch.get_autocast_gpu_dtype() |
|
elif bias.device.type == "cpu" and torch.is_autocast_cpu_enabled(): |
|
target_dtype = torch.get_autocast_cpu_dtype() |
|
if bias.dtype != target_dtype: |
|
bias = bias.to(target_dtype) |
|
ensure_finite_(bias, check_neg_inf=True, check_pos_inf=False) |
|
return bias |
|
|
|
def _scaled_dot_product_attention( |
|
self, |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
attn_mask: Optional[torch.Tensor] = None, |
|
drop_mask: Optional[torch.Tensor] = None, |
|
dropout_p: float = 0.0, |
|
response_dropout_p: float = 0.0, |
|
is_causal: bool = False, |
|
) -> torch.Tensor: |
|
""" |
|
Computes scaled dot product attention on query, key and value tensors, using an optional |
|
attention mask if passed, and applying dropout if a probability greater than 0.0 is specified. |
|
""" |
|
if attn_mask is not None: |
|
attn_mask = attn_mask.to(q.device) |
|
|
|
if self.flash_attn_func is not None and attn_mask is None: |
|
r = self.flash_attn_func( |
|
q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), dropout_p=dropout_p, causal=is_causal |
|
) |
|
return r.transpose(1, 2) |
|
else: |
|
|
|
assert k.size(1) == v.size(1) |
|
num_kv_heads = k.size(1) |
|
num_q_heads = q.size(1) |
|
if num_q_heads != num_kv_heads: |
|
assert num_q_heads % num_kv_heads == 0 |
|
k = k.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads) |
|
v = v.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads) |
|
|
|
return F.scaled_dot_product_attention( |
|
q, |
|
k, |
|
v, |
|
attn_mask=attn_mask, |
|
dropout_p=dropout_p, |
|
is_causal=is_causal, |
|
) |
|
|
|
def forward( |
|
self, |
|
x, |
|
attention_bias, |
|
position_ids, |
|
drop_mask, |
|
layer_past, |
|
use_cache |
|
): |
|
if not self.config.norm_after: |
|
atten_in = self.attn_norm(x) |
|
else: |
|
atten_in = x |
|
|
|
qkv = self.att_proj(atten_in) |
|
|
|
if self.config.clip_qkv is not None: |
|
qkv.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) |
|
|
|
q, k, v = qkv.split(self.fused_dims, dim=-1) |
|
|
|
|
|
att, cache = self.attention( |
|
q, k, v, |
|
attention_bias, |
|
position_ids=position_ids, |
|
drop_mask=drop_mask, |
|
layer_past=layer_past, |
|
use_cache=use_cache |
|
) |
|
|
|
if self.config.norm_after: |
|
att = self.attn_norm(att) |
|
|
|
return att, cache |
|
|
|
|
|
class MolmoMLP(nn.Module): |
|
def __init__( |
|
self, |
|
config: MolmoConfig |
|
): |
|
|
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = ( |
|
config.mlp_hidden_size if config.mlp_hidden_size is not None \ |
|
else config.mlp_ratio * config.d_model |
|
) |
|
self.act = SwiGLU(config) |
|
self.ff_proj = nn.Linear( |
|
config.d_model, |
|
self.hidden_size, |
|
bias=config.include_bias, |
|
device=config.init_device |
|
) |
|
self.ff_out = nn.Linear( |
|
int(self.act.output_multiplier * self.hidden_size), |
|
config.d_model, |
|
bias=config.include_bias, |
|
device=config.init_device, |
|
) |
|
self.ff_norm = RMSLayerNorm( |
|
config, |
|
size=config.d_model, |
|
eps=config.layer_norm_eps |
|
) |
|
|
|
def forward(self, x): |
|
if not self.config.norm_after: |
|
x = self.ff_norm(x) |
|
|
|
x = self.ff_proj(x) |
|
x = self.act(x) |
|
x = self.ff_out(x) |
|
|
|
if self.config.norm_after: |
|
x = self.ff_norm(x) |
|
|
|
return x |
|
|
|
class MolmoeMLP(nn.Module): |
|
def __init__(self, config): |
|
from transformers.activations import ACT2FN |
|
super().__init__() |
|
self.config = config |
|
self.d_model = config.d_model |
|
self.hidden_size = ( |
|
config.mlp_hidden_size if config.mlp_hidden_size is not None \ |
|
else config.mlp_ratio * config.d_model |
|
) // 2 |
|
self.gate_proj = nn.Linear(self.d_model, self.hidden_size, bias=False) |
|
self.up_proj = nn.Linear(self.d_model, self.hidden_size, bias=False) |
|
self.down_proj = nn.Linear(self.hidden_size, self.d_model, bias=False) |
|
self.act_fn = ACT2FN["silu"] |
|
|
|
def forward(self, x): |
|
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
|
class MolmoeSparseMoeBlock(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.num_experts = config.moe_num_experts |
|
self.top_k = config.moe_top_k |
|
self.gate = nn.Linear(config.hidden_size, self.num_experts, bias=False) |
|
self.experts = nn.ModuleList([MolmoeMLP(config) for _ in range(self.num_experts)]) |
|
self.ff_norm = RMSLayerNorm( |
|
config, |
|
size=config.d_model, |
|
eps=config.layer_norm_eps |
|
) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.ff_norm(hidden_states) |
|
batch_size, sequence_length, hidden_dim = hidden_states.shape |
|
hidden_states = hidden_states.view(-1, hidden_dim) |
|
|
|
router_logits = self.gate(hidden_states) |
|
|
|
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) |
|
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) |
|
|
|
|
|
routing_weights = routing_weights.to(hidden_states.dtype) |
|
|
|
final_hidden_states = torch.zeros( |
|
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device |
|
) |
|
|
|
|
|
|
|
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0) |
|
|
|
|
|
for expert_idx in range(self.num_experts): |
|
expert_layer = self.experts[expert_idx] |
|
idx, top_x = torch.where(expert_mask[expert_idx]) |
|
|
|
|
|
|
|
|
|
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim) |
|
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None] |
|
|
|
|
|
|
|
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) |
|
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim) |
|
return final_hidden_states, router_logits |
|
|
|
|
|
class MolmoDecoderLayer(nn.Module): |
|
""" |
|
A base class for transformer block implementations. |
|
""" |
|
def __init__( |
|
self, |
|
layer_id: int, |
|
config: MolmoConfig, |
|
cache: BufferCache |
|
): |
|
super().__init__() |
|
self.attn = MolmoAttention(config, cache) |
|
if getattr(config, "moe_num_experts", 0) > 0: |
|
self.mlp = MolmoeSparseMoeBlock(config) |
|
else: |
|
self.mlp = MolmoMLP(config) |
|
self.layer_id = layer_id |
|
self.config = config |
|
self.hidden_size = ( |
|
config.mlp_hidden_size if config.mlp_hidden_size is not None else config.mlp_ratio * config.d_model |
|
) |
|
self.__cache = cache |
|
if config.head_dim is None: |
|
assert config.d_model % config.n_heads == 0 |
|
|
|
self._activation_checkpoint_fn = None |
|
|
|
|
|
self.dropout = Dropout( |
|
config.residual_dropout, |
|
mask_p=config.response_residual_dropout |
|
) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
attention_bias: Optional[torch.FloatTensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
drop_mask: Optional[torch.Tensor] = None, |
|
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
use_cache: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]: |
|
"""Get query, key, value projections. |
|
shape: |
|
for regular attn q, k, v: (batch_size, seq_len, d_model) |
|
for multi-query attn q: (batch_size, seq_len, d_model) |
|
k, v: (batch_size, seq_len, d_model // n_heads) |
|
for group query attn q: (batch_size, seq_len, d_model) |
|
k, v: (batch_size, seq_len, d_model // n_kv_heads) |
|
""" |
|
|
|
att, cache = self.attn( |
|
x, |
|
attention_bias=attention_bias, |
|
position_ids=position_ids, |
|
drop_mask=drop_mask, |
|
layer_past=layer_past, |
|
use_cache=use_cache |
|
) |
|
x = x + self.dropout(att, drop_mask=drop_mask) |
|
og_x = x |
|
x, _ = self.mlp(x) |
|
x = self.dropout(x, drop_mask=drop_mask) |
|
x = og_x + x |
|
|
|
return x, cache |
|
|
|
|
|
class MolmoOutput(NamedTuple): |
|
attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] |
|
""" |
|
Attention keys and values from each block. |
|
""" |
|
|
|
hidden_states: Optional[Tuple[torch.Tensor]] |
|
""" |
|
Hidden states from each block. |
|
""" |
|
|
|
last_hidden_states: torch.Tensor |
|
|
|
|
|
class MOLMoGenerateOutput(NamedTuple): |
|
token_ids: torch.LongTensor |
|
""" |
|
The generated token IDs, a tensor of shape `(batch_size, beam_size, max_steps)`. |
|
These do *not* include the original input IDs. |
|
""" |
|
|
|
scores: torch.FloatTensor |
|
""" |
|
The scores of the generated sequences, a tensor of shape `(batch_size, beam_size)`. |
|
""" |
|
|
|
|
|
class MultiHeadDotProductAttention(nn.Module): |
|
def __init__(self, config: MolmoConfig, use_bias: bool = True, is_vit_layer: Optional[bool] = True): |
|
super().__init__() |
|
self.config = config |
|
self.use_bias = use_bias |
|
|
|
v_cfg = config.vision_backbone |
|
self.embed_dim = v_cfg.image_emb_dim |
|
self.num_heads = v_cfg.image_num_heads |
|
self.head_dim = v_cfg.image_head_dim |
|
self.num_key_value_heads = v_cfg.image_num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.initializer_range = v_cfg.initializer_range |
|
self.is_vit_layer = is_vit_layer |
|
|
|
nlayers = 1 if (is_vit_layer or config.vit_layers is None) else len(config.vit_layers) |
|
|
|
self.wq = nn.Linear( |
|
nlayers * self.embed_dim, |
|
self.num_heads * self.head_dim, |
|
bias=use_bias, |
|
device=config.init_device, |
|
) |
|
self.wk = nn.Linear( |
|
nlayers * self.embed_dim, |
|
self.num_key_value_heads * self.head_dim, |
|
bias=use_bias, |
|
device=config.init_device, |
|
) |
|
self.wv = nn.Linear( |
|
nlayers * self.embed_dim, |
|
self.num_key_value_heads * self.head_dim, |
|
bias=use_bias, |
|
device=config.init_device, |
|
) |
|
self.wo = nn.Linear( |
|
self.num_heads * self.head_dim, |
|
self.embed_dim, |
|
bias=use_bias, |
|
device=config.init_device, |
|
) |
|
self.attention_dropout: Optional[Dropout] = None |
|
if v_cfg.attention_dropout > 0: |
|
self.attention_dropout = Dropout(v_cfg.attention_dropout, broadcast_dims=(0, 1)) |
|
self.residual_dropout = Dropout(v_cfg.residual_dropout) |
|
|
|
def reset_parameters(self): |
|
nn.init.normal_(self.wq.weight, std=self.initializer_range) |
|
nn.init.normal_(self.wk.weight, std=self.initializer_range) |
|
nn.init.normal_(self.wv.weight, std=self.initializer_range) |
|
nn.init.normal_(self.wo.weight, std=self.initializer_range) |
|
if self.use_bias: |
|
nn.init.constant_(self.wq.bias, 0) |
|
nn.init.constant_(self.wk.bias, 0) |
|
nn.init.constant_(self.wv.bias, 0) |
|
nn.init.constant_(self.wo.bias, 0) |
|
|
|
def _split_heads(self, hidden_states, num_heads) -> torch.Tensor: |
|
return hidden_states.reshape(hidden_states.shape[:2] + (num_heads, self.head_dim)) |
|
|
|
def _merge_heads(self, hidden_states) -> torch.Tensor: |
|
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) |
|
|
|
def forward(self, inputs_q: torch.Tensor, inputs_kv: Optional[torch.Tensor] = None) -> torch.Tensor: |
|
if inputs_kv is not None: |
|
inputs_k = inputs_kv |
|
inputs_v = inputs_kv |
|
else: |
|
inputs_k = inputs_q |
|
inputs_v = inputs_q |
|
|
|
xq, xk, xv = self.wq(inputs_q), self.wk(inputs_k), self.wv(inputs_v) |
|
|
|
xq = self._split_heads(xq, self.num_heads) |
|
xk = self._split_heads(xk, self.num_key_value_heads) |
|
xv = self._split_heads(xv, self.num_key_value_heads) |
|
|
|
if self.num_heads != self.num_key_value_heads: |
|
xk = xk.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads) |
|
xv = xv.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads) |
|
|
|
og_dtype = xq.dtype |
|
|
|
if self.config.float32_attention: |
|
xq = xq.to(torch.float) |
|
xk = xk.to(torch.float) |
|
xv = xv.to(torch.float) |
|
|
|
if self.config.attention_type == AttentionType.direct: |
|
attn_weights = torch.einsum("...qhd,...khd->...hqk", xq / math.sqrt(xq.size(-1)), xk) |
|
attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(xq.dtype) |
|
if self.attention_dropout is not None: |
|
attn_weights = self.attention_dropout(attn_weights) |
|
attn_output = torch.einsum("...hqk,...khd->...qhd", attn_weights.to(xv.dtype), xv) |
|
|
|
elif self.config.attention_type == AttentionType.sdpa: |
|
attn_output = F.scaled_dot_product_attention( |
|
xq.transpose(1, 2).contiguous(), |
|
xk.transpose(1, 2).contiguous(), |
|
xv.transpose(1, 2).contiguous(), |
|
is_causal=False, |
|
dropout_p=self.config.vision_backbone.attention_dropout |
|
).transpose(1, 2) |
|
else: |
|
raise NotImplementedError(self.config.attention_type) |
|
attn_output = attn_output.to(og_dtype) |
|
attn_output = self._merge_heads(attn_output) |
|
attn_output = self.wo(attn_output) |
|
attn_output = self.residual_dropout(attn_output) |
|
|
|
return attn_output |
|
|
|
|
|
class MultiHeadAttentionPool(nn.Module): |
|
def __init__( |
|
self, |
|
config: MolmoConfig, |
|
factor: int = 1, |
|
use_bias: bool = True, |
|
dropout: bool = True, |
|
output_layer: bool = True, |
|
mean_residual: bool = False, |
|
query: str = "mean", |
|
is_vit_layer: Optional[bool] = True |
|
): |
|
super().__init__() |
|
self.config = config |
|
self.factor = factor |
|
self.use_bias = use_bias |
|
self.dropout = dropout |
|
self.output_layer = output_layer |
|
self.mean_residual = mean_residual |
|
self.query = query |
|
|
|
v_cfg = config.vision_backbone |
|
input_dim = v_cfg.image_emb_dim |
|
self.embed_dim = v_cfg.image_emb_dim * factor |
|
self.num_heads = v_cfg.image_num_heads |
|
self.head_dim = v_cfg.image_head_dim * factor |
|
self.num_key_value_heads = v_cfg.image_num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.initializer_range = v_cfg.initializer_range |
|
|
|
nlayers = 1 if (is_vit_layer or config.vit_layers is None) else len(config.vit_layers) |
|
|
|
if query != "vector": |
|
self.wq = nn.Linear( |
|
nlayers * input_dim, |
|
self.num_heads * self.head_dim, |
|
bias=use_bias, |
|
device=config.init_device, |
|
) |
|
self.wk = nn.Linear( |
|
nlayers * input_dim, |
|
self.num_key_value_heads * self.head_dim, |
|
bias=use_bias, |
|
device=config.init_device, |
|
) |
|
self.wv = nn.Linear( |
|
nlayers * input_dim, |
|
self.num_key_value_heads * self.head_dim, |
|
bias=use_bias, |
|
device=config.init_device, |
|
) |
|
|
|
if query == "vector": |
|
self.attention_query = nn.Parameter( |
|
torch.zeros( |
|
1, self.num_key_value_heads * self.head_dim, device=config.init_device, |
|
), |
|
) |
|
|
|
if output_layer: |
|
self.wo = nn.Linear( |
|
self.num_heads * self.head_dim, |
|
self.embed_dim, |
|
bias=use_bias, |
|
device=config.init_device, |
|
) |
|
self.attention_dropout = Dropout(v_cfg.attention_dropout, broadcast_dims=(0, 1)) |
|
if dropout: |
|
self.residual_dropout = Dropout(v_cfg.residual_dropout) |
|
|
|
def reset_parameters(self): |
|
if self.query != "vector": |
|
nn.init.normal_(self.wq.weight, std=self.initializer_range) |
|
nn.init.normal_(self.wk.weight, std=self.initializer_range) |
|
nn.init.normal_(self.wv.weight, std=self.initializer_range) |
|
if self.output_layer: |
|
nn.init.normal_(self.wo.weight, std=self.initializer_range) |
|
if self.use_bias: |
|
if self.query != "vector": |
|
nn.init.constant_(self.wq.bias, 0) |
|
nn.init.constant_(self.wk.bias, 0) |
|
nn.init.constant_(self.wv.bias, 0) |
|
if self.output_layer: |
|
nn.init.constant_(self.wo.bias, 0) |
|
if self.query == "vector": |
|
nn.init.normal_(self.attention_query, std=self.initializer_range) |
|
|
|
def _split_heads(self, hidden_states, num_heads): |
|
return hidden_states.reshape(hidden_states.shape[:2] + (num_heads, self.head_dim)) |
|
|
|
def _merge_heads(self, hidden_states): |
|
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) |
|
|
|
def forward(self, inputs_kv: torch.Tensor) -> torch.Tensor: |
|
|
|
xk, xv = self.wk(inputs_kv), self.wv(inputs_kv) |
|
|
|
if self.query == "mean": |
|
inputs_q = inputs_kv.mean(dim=1, keepdim=True) |
|
xq = self.wq(inputs_q) |
|
elif self.query == "first": |
|
inputs_q = inputs_kv[:, :1] |
|
xq = self.wq(inputs_q) |
|
elif self.query == "vector": |
|
xq = self.attention_query.expand(inputs_kv.size(0), -1, -1) |
|
elif self.query == "constant": |
|
inputs_q = torch.ones_like(inputs_kv[:, :1]) / math.sqrt(inputs_kv.shape[-1]) |
|
xq = self.wq(inputs_q) |
|
else: |
|
raise ValueError(f"Unknown query type: {self.query}") |
|
|
|
xq = self._split_heads(xq, self.num_heads) |
|
xk = self._split_heads(xk, self.num_key_value_heads) |
|
xv = self._split_heads(xv, self.num_key_value_heads) |
|
|
|
if self.num_heads != self.num_key_value_heads: |
|
xk = xk.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads) |
|
xv = xv.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads) |
|
|
|
xq = xq.to(torch.float) |
|
xk = xk.to(torch.float) |
|
|
|
xq = xq / math.sqrt(xq.size(-1)) |
|
attn_weights = torch.einsum("...qhd,...khd->...hqk", xq, xk) |
|
|
|
attn_weights = F.softmax(attn_weights, dim=-1).to(xq.dtype) |
|
|
|
attn_weights = self.attention_dropout(attn_weights).to(xv.dtype) |
|
|
|
attn_output = torch.einsum("...hqk,...khd->...qhd", attn_weights, xv) |
|
attn_output = self._merge_heads(attn_output) |
|
if self.output_layer: |
|
attn_output = self.wo(attn_output) |
|
if self.dropout: |
|
attn_output = self.residual_dropout(attn_output) |
|
if self.mean_residual: |
|
attn_output += inputs_kv.mean(dim=1, keepdim=True) |
|
|
|
return attn_output |
|
|
|
|
|
class ViTMLP(nn.Module): |
|
def __init__(self, config: MolmoConfig): |
|
super().__init__() |
|
self.config = config |
|
v_cfg = config.vision_backbone |
|
|
|
self.w1 = nn.Linear( |
|
v_cfg.image_emb_dim, |
|
v_cfg.image_mlp_dim, |
|
bias=True, |
|
device=config.init_device, |
|
) |
|
|
|
cfg = deepcopy(config) |
|
cfg.activation_type = v_cfg.image_mlp_activations |
|
self.act = QuickGELU(cfg) |
|
self.w2 = nn.Linear( |
|
v_cfg.image_mlp_dim, |
|
v_cfg.image_emb_dim, |
|
bias=True, |
|
device=config.init_device, |
|
) |
|
|
|
def reset_parameters(self): |
|
v_cfg = self.config.vision_backbone |
|
nn.init.trunc_normal_(self.w1.weight, std=math.sqrt(1 / v_cfg.image_emb_dim), a=-2.0, b=2.0) |
|
nn.init.trunc_normal_(self.w2.weight, std=math.sqrt(1 / v_cfg.image_mlp_dim), a=-2.0, b=2.0) |
|
nn.init.zeros_(self.w1.bias) |
|
nn.init.zeros_(self.w2.bias) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.w1(x) |
|
x = self.act(x) |
|
x = self.w2(x) |
|
return x |
|
|
|
|
|
class MLP(nn.Module): |
|
def __init__(self, config: ModelConfig, input_dim: int, dropout: float = 0.0): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = ( |
|
config.mlp_hidden_size if config.mlp_hidden_size is not None else config.mlp_ratio * config.d_model |
|
) |
|
self.initializer_range = config.initializer_range |
|
|
|
self.w1 = nn.Linear( |
|
input_dim, |
|
self.hidden_size // 2, |
|
bias=False, |
|
device=config.init_device, |
|
) |
|
self.w2 = nn.Linear( |
|
self.hidden_size // 2, |
|
config.d_model, |
|
bias=False, |
|
device=config.init_device, |
|
) |
|
self.w3 = nn.Linear( |
|
input_dim, |
|
self.hidden_size // 2, |
|
bias=False, |
|
device=config.init_device, |
|
) |
|
|
|
self.act = LlamaSwiGLU(config) |
|
self.dropout = Dropout(dropout) |
|
|
|
def reset_parameters(self): |
|
nn.init.normal_(self.w1.weight, std=self.initializer_range) |
|
nn.init.normal_(self.w2.weight, std=self.initializer_range) |
|
nn.init.normal_(self.w3.weight, std=self.initializer_range) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.w2(self.act(self.w1(x), self.w3(x))) |
|
x = self.dropout(x) |
|
return x |
|
|
|
|
|
class Residual(nn.Module): |
|
def __init__(self, submodule: nn.Module): |
|
super().__init__() |
|
self.submodule = submodule |
|
|
|
def reset_parameters(self): |
|
self.submodule.reset_parameters() |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
return x + self.submodule(x) |
|
|
|
|
|
class LayerNormFp32(nn.LayerNorm): |
|
"""Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back). |
|
Derived from https://github.com/mlfoundations/open_clip/blob/main/src/open_clip/transformer.py. |
|
""" |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
orig_type = x.dtype |
|
if self.training: |
|
x = F.layer_norm(x.to(torch.float32), self.normalized_shape, self.weight, self.bias, self.eps) |
|
else: |
|
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) |
|
return x.to(orig_type) |
|
|
|
|
|
class ResidualAttentionBlock(nn.Module): |
|
def __init__(self, config: MolmoConfig): |
|
super().__init__() |
|
self.config = config |
|
|
|
v_cfg = config.vision_backbone |
|
self.attention = MultiHeadDotProductAttention(config) |
|
self.feed_forward = ViTMLP(config) |
|
self.attention_norm = nn.LayerNorm( |
|
v_cfg.image_emb_dim, |
|
eps=v_cfg.image_norm_eps, |
|
device=config.init_device, |
|
) |
|
self.ffn_norm = nn.LayerNorm( |
|
v_cfg.image_emb_dim, |
|
eps=v_cfg.image_norm_eps, |
|
device=config.init_device, |
|
) |
|
|
|
def reset_parameters(self): |
|
self.attention.reset_parameters() |
|
self.feed_forward.reset_parameters() |
|
self.attention_norm.reset_parameters() |
|
self.ffn_norm.reset_parameters() |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = x + self.attention(self.attention_norm(x)) |
|
x = x + self.feed_forward(self.ffn_norm(x)) |
|
return x |
|
|
|
|
|
class BlockCollection(nn.Module): |
|
def __init__(self, config: MolmoConfig): |
|
super().__init__() |
|
self.config = config |
|
self.grad_checkpointing: bool = False |
|
self._activation_checkpoint_fn: Callable = vit_activation_checkpoint_function(self.config) |
|
|
|
v_cfg = config.vision_backbone |
|
self.resblocks = nn.ModuleList([ |
|
ResidualAttentionBlock(config) for _ in range(v_cfg.image_num_layers) |
|
]) |
|
|
|
def reset_parameters(self): |
|
for r in self.resblocks: |
|
r.reset_parameters() |
|
|
|
def forward(self, x: torch.Tensor) -> List[torch.Tensor]: |
|
hidden_states = [] |
|
for r in self.resblocks: |
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
x = self._activation_checkpoint_fn(r, x) |
|
else: |
|
x = r(x) |
|
hidden_states.append(x) |
|
return hidden_states |
|
|
|
|
|
def _expand_token(token, batch_size: int): |
|
return token.view(1, 1, -1).expand(batch_size, -1, -1) |
|
|
|
|
|
class VisionTransformer(nn.Module): |
|
def __init__(self, config: MolmoConfig): |
|
super().__init__() |
|
self.config = config |
|
|
|
v_cfg = config.vision_backbone |
|
|
|
self.scale = v_cfg.image_emb_dim ** -0.5 |
|
self.class_embedding = nn.Parameter( |
|
torch.zeros(v_cfg.image_emb_dim, device=config.init_device), |
|
) |
|
self.num_prefix_tokens: int = 1 |
|
self.positional_embedding = nn.Parameter( |
|
torch.zeros(v_cfg.image_num_pos, v_cfg.image_emb_dim, device=config.init_device), |
|
) |
|
|
|
image_patch_size = v_cfg.image_patch_size |
|
self.patch_embedding = nn.Linear( |
|
image_patch_size * image_patch_size * 3, |
|
v_cfg.image_emb_dim, |
|
bias=False, |
|
device=config.init_device, |
|
) |
|
|
|
self.pre_ln = LayerNormFp32( |
|
v_cfg.image_emb_dim, |
|
eps=v_cfg.image_norm_eps, |
|
device=config.init_device, |
|
) |
|
|
|
self.transformer = BlockCollection(config) |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
self.transformer.grad_checkpointing = enable |
|
|
|
def reset_parameters(self): |
|
nn.init.normal_(self.class_embedding, std=self.scale) |
|
nn.init.normal_(self.positional_embedding, std=self.scale) |
|
nn.init.normal_(self.patch_embedding.weight, std=0.02) |
|
self.pre_ln.reset_parameters() |
|
self.transformer.reset_parameters() |
|
|
|
def add_pos_emb(self, x: torch.Tensor, patch_num: int) -> torch.Tensor: |
|
cls_emb = self.positional_embedding[0:1] |
|
pos_emb = self.positional_embedding[1:] |
|
|
|
pos_emb = pos_emb.reshape( |
|
(int(math.sqrt(pos_emb.shape[0])), int(math.sqrt(pos_emb.shape[0])), pos_emb.shape[1]) |
|
) |
|
|
|
(patch_num_0, patch_num_1) = patch_num |
|
|
|
if pos_emb.shape[0] != patch_num_0 or pos_emb.shape[1] != patch_num_1: |
|
|
|
|
|
pos_emb = pos_emb.unsqueeze(0).permute(0, 3, 1, 2) |
|
pos_emb = F.interpolate( |
|
pos_emb, size=(patch_num_0, patch_num_1), mode="bicubic", align_corners=False, antialias=True, |
|
) |
|
pos_emb = pos_emb.permute(0, 2, 3, 1).squeeze(0) |
|
|
|
pos_emb = pos_emb.reshape(-1, pos_emb.shape[-1]) |
|
x = x + torch.cat([cls_emb[None, :, :], pos_emb[None, :, :]], dim=1).to(x.dtype) |
|
return x |
|
|
|
def forward(self, x: torch.Tensor, patch_num: int = None) -> List[torch.Tensor]: |
|
""" |
|
: param x: (batch_size, num_patch, n_pixels) |
|
""" |
|
if patch_num is None: |
|
patch_num = self.config.vision_backbone.image_num_patch |
|
B, N, D = x.shape |
|
|
|
x = self.patch_embedding(x) |
|
|
|
|
|
x = torch.cat([_expand_token(self.class_embedding, x.shape[0]).to(x.dtype), x], dim=1) |
|
x = self.add_pos_emb(x, patch_num) |
|
|
|
x = self.pre_ln(x) |
|
|
|
hidden_states = self.transformer(x) |
|
return hidden_states |
|
|
|
|
|
class MolmoVisionBackbone(nn.Module): |
|
def __init__(self, config: VisionBackboneConfig): |
|
super().__init__() |
|
self.config = config |
|
input_dim: int = None |
|
self.image_pooling_2d: nn.Module = None |
|
if config.image_pooling_2d in {ImagePooling2DType.attention, ImagePooling2DType.attention_meanq}: |
|
self.image_pooling_2d = MultiHeadDotProductAttention(config, is_vit_layer=False) |
|
input_dim = config.vision_backbone.image_emb_dim |
|
elif config.image_pooling_2d == ImagePooling2DType.attention_2wide: |
|
cfg = deepcopy(config) |
|
cfg.vision_backbone.image_emb_dim *= 2 |
|
cfg.vision_backbone.image_head_dim *= 2 |
|
self.image_pooling_2d = MultiHeadDotProductAttention(cfg, is_vit_layer=False) |
|
input_dim = cfg.vision_backbone.image_emb_dim |
|
elif config.image_pooling_2d == ImagePooling2DType.attention_v2: |
|
assert config.vit_layers is not None |
|
use_bias = True |
|
dropout = True |
|
output_layer = True |
|
query = "mean" |
|
mean_residual = False |
|
factor = len(config.vit_layers) |
|
self.image_pooling_2d = MultiHeadAttentionPool( |
|
config, |
|
factor=factor, |
|
use_bias=use_bias, |
|
dropout=dropout, |
|
output_layer=output_layer, |
|
mean_residual=mean_residual, |
|
query=query, |
|
is_vit_layer=False, |
|
) |
|
input_dim = config.vision_backbone.image_emb_dim * factor |
|
elif config.image_pooling_2d in [ImagePooling2DType.none, ImagePooling2DType.stack]: |
|
self.image_pooling_2d = None |
|
nlayers = 1 if config.vit_layers is None else len(config.vit_layers) |
|
input_dim = nlayers * config.vision_backbone.image_emb_dim |
|
else: |
|
raise NotImplementedError(f"Unknown image pooling 2D method: {config.image_pooling_2d}") |
|
|
|
self.input_dim = input_dim |
|
|
|
self.image_projector = MLP(config, input_dim) |
|
|
|
self.image_feature_dropout = Dropout(config.image_feature_dropout) |
|
|
|
@classmethod |
|
def build(cls, config: MolmoConfig) -> OLMoVisionBackbone: |
|
v_cfg = config.vision_backbone |
|
assert v_cfg is not None |
|
return MolmoPretrainedVisionBackbone(config) |
|
|
|
@abstractmethod |
|
def set_activation_checkpointing(self, strategy: Optional[ActivationCheckpointingStrategy]): |
|
raise NotImplementedError() |
|
|
|
def reset_parameters(self): |
|
if self.image_pooling_2d is not None: |
|
self.image_pooling_2d.reset_parameters() |
|
if self.config.image_projector == "2mlp": |
|
for module in self.image_projector: |
|
module.reset_parameters() |
|
elif self.config.image_projector == "linear": |
|
nn.init.xavier_uniform_(self.image_projector.weight) |
|
else: |
|
self.image_projector.reset_parameters() |
|
|
|
@abstractmethod |
|
def forward(self, images: torch.Tensor, image_masks: torch.Tensor) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: |
|
raise NotImplementedError |
|
|
|
|
|
class MolmoPretrainedVisionBackbone(MolmoVisionBackbone): |
|
def __init__(self, config: MolmoVisionBackboneConfig): |
|
super().__init__(config) |
|
v_cfg = self.config.vision_backbone |
|
|
|
if v_cfg.image_model_type == VisionBackboneType.openai: |
|
self.image_vit = VisionTransformer(config) |
|
else: |
|
raise NotImplementedError(f"Unknown image model type: {v_cfg.image_model_type}") |
|
|
|
self.num_prefix_tokens = self.image_vit.num_prefix_tokens |
|
assert self.num_prefix_tokens in {0, 1}, "Only 0 or 1 prefix tokens are supported" |
|
if config.use_cls_feature: |
|
assert self.num_prefix_tokens > 0, "The model does not have a CLS token" |
|
nlayers = 1 if config.vit_layers is None else len(config.vit_layers) |
|
self.cls_projector = nn.Linear( |
|
nlayers * v_cfg.image_emb_dim, |
|
self.input_dim, |
|
bias=False, |
|
device=config.init_device, |
|
) |
|
|
|
self.pad_embed = None |
|
if config.image_padding_embed: |
|
image_dim = v_cfg.image_emb_dim*len(self.config.vit_layers) |
|
if config.image_padding_embed in ["pad_embed", "regress"]: |
|
self.pad_embed = nn.Parameter( |
|
torch.zeros((image_dim,), device=config.init_device)) |
|
elif config.image_padding_embed == "pad_and_partial_pad": |
|
self.pad_embed = nn.Parameter( |
|
torch.zeros((2, image_dim), device=config.init_device)) |
|
else: |
|
raise ValueError(config.image_padding_embed) |
|
|
|
def reset_with_pretrained_weights(self): |
|
super().reset_parameters() |
|
if self.config.vit_load_path: |
|
vit_load_path = Path(self.config.vit_load_path) |
|
state_dict_path = resource_path( |
|
vit_load_path.parent, vit_load_path.name, |
|
local_cache=vit_load_path.parent, |
|
) |
|
assert state_dict_path.is_file(), f"Model file {str(state_dict_path)} not found" |
|
state_dict = torch.load(state_dict_path, map_location="cpu") |
|
self.image_vit.load_state_dict(state_dict) |
|
else: |
|
self.image_vit.reset_parameters() |
|
if self.config.use_cls_feature: |
|
nn.init.xavier_uniform_(self.cls_projector.weight) |
|
if self.pad_embed is not None: |
|
nn.init.zeros_(self.pad_embed) |
|
|
|
def reset_parameters(self): |
|
super().reset_parameters() |
|
self.image_vit.reset_parameters() |
|
if self.config.use_cls_feature: |
|
nn.init.xavier_uniform_(self.cls_projector.weight) |
|
|
|
def set_activation_checkpointing(self, strategy: Optional[ActivationCheckpointingStrategy]): |
|
self.grad_checkpointing = True |
|
if strategy in (ActivationCheckpointingStrategy.whole_layer, ActivationCheckpointingStrategy.vit_only): |
|
self.image_vit.set_grad_checkpointing() |
|
|
|
def encode_image(self, images: torch.Tensor) -> torch.Tensor: |
|
""" |
|
: param images: (batch_size, num_crops, num_patch, n_pixels) |
|
""" |
|
cfg = self.config |
|
v_cfg = self.config.vision_backbone |
|
B, T, N, D = images.shape |
|
|
|
mask = torch.all(images.view(B * T, N, D) != -1, dim=(1, 2), keepdim=True) |
|
|
|
|
|
|
|
images = images.view(B * T, N, D) |
|
image_features = self.image_vit(images) |
|
|
|
if cfg.vit_layers is not None: |
|
features = [] |
|
for layer in cfg.vit_layers: |
|
features.append(image_features[layer]) |
|
image_features = torch.cat(features, dim=-1) |
|
else: |
|
image_features = image_features[-1] |
|
|
|
cls_embed: torch.Tensor = None |
|
if self.num_prefix_tokens > 0: |
|
cls_embed = image_features[:, 0] |
|
image_features = image_features[:, 1:] |
|
|
|
image_features = image_features * mask |
|
image_features = image_features.view(B, T, N, -1) |
|
|
|
cls_embed = cls_embed.view(B, T, -1) if cls_embed is not None else None |
|
|
|
return image_features, cls_embed |
|
|
|
def forward(self, images: torch.Tensor, image_masks: torch.Tensor) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: |
|
cfg = self.config |
|
|
|
|
|
batch_size, num_image = images.shape[:2] |
|
image_features, cls_embed = self.encode_image(images) |
|
|
|
og_dtype = image_features.dtype |
|
if cfg.image_padding_embed: |
|
assert image_masks is not None |
|
if cfg.image_padding_embed == "pad_embed": |
|
all_pad = (image_masks == 0).to(dtype=torch.float32) |
|
pad_embed = self.pad_embed[None, None, None, :] |
|
image_features = image_features + pad_embed * torch.unsqueeze(all_pad, -1) |
|
elif cfg.image_padding_embed == "regress": |
|
pad_embed = self.pad_embed[None, None, None, :] |
|
image_features = image_features + pad_embed * torch.unsqueeze(torch.maximum(image_masks, torch.zeros_like(image_masks)), -1) |
|
elif cfg.image_padding_embed == "pad_and_partial_pad": |
|
og_dtype = image_features.dtype |
|
pad_embed = self.pad_embed[:, None, None, None, :] |
|
all_pad = image_masks == 0 |
|
partial_pad = torch.logical_and(image_masks < 1, torch.logical_not(all_pad)).to(dtype=torch.float32) |
|
all_pad = all_pad.to(dtype=torch.float32) |
|
image_features = image_features + pad_embed[0] * torch.unsqueeze(all_pad, -1) |
|
image_features = image_features + pad_embed[1] * torch.unsqueeze(partial_pad, -1) |
|
else: |
|
raise ValueError(cfg.image_padding_embed) |
|
|
|
image_features = image_features.to(og_dtype) |
|
image_features = self.image_feature_dropout(image_features) |
|
if cls_embed is not None: |
|
cls_embed = self.image_feature_dropout(cls_embed) |
|
|
|
image_features = image_features.reshape( |
|
(batch_size, num_image) + cfg.vision_backbone.image_num_patch + (-1,), |
|
) |
|
|
|
if cfg.vision_backbone.image_num_patch[0] % cfg.image_pooling_h == 1: |
|
|
|
image_features = F.pad( |
|
image_features, |
|
(0, 0, 0, 1, 0, 1, 0, 0, 0, 0), |
|
) |
|
|
|
|
|
image_features = einops.rearrange( |
|
image_features, |
|
'b n (h dh) (w dw) c -> (b n h w) (dh dw) c', |
|
dh=cfg.image_pooling_h, |
|
dw=cfg.image_pooling_w, |
|
) |
|
|
|
if cfg.image_pooling_2d == ImagePooling2DType.attention_meanq: |
|
query = image_features.mean(-2, keepdim=True) |
|
image_features = self.image_pooling_2d(query, image_features) |
|
elif cfg.image_pooling_2d == ImagePooling2DType.attention_v2: |
|
image_features = self.image_pooling_2d(image_features) |
|
elif cfg.image_pooling_2d not in {ImagePooling2DType.none, ImagePooling2DType.stack}: |
|
image_features = self.image_pooling_2d(image_features[:, :1, :], image_features) |
|
|
|
h, w = cfg.llm_patches_per_crop |
|
image_features = image_features.reshape(batch_size, num_image, h * w, -1) |
|
|
|
|
|
if cfg.image_projector == ImageProjectType.mlpx2: |
|
for module in self.image_projector: |
|
image_features = module(image_features) |
|
else: |
|
image_features = self.image_projector(image_features) |
|
|
|
if self.config.use_cls_feature: |
|
cls_embed = self.cls_projector(cls_embed) |
|
if cfg.image_projector == ImageProjectType.mlpx2: |
|
for module in self.image_projector: |
|
cls_embed = module(cls_embed) |
|
else: |
|
cls_embed = self.image_projector(cls_embed) |
|
|
|
|
|
|
|
return image_features, cls_embed |
|
|
|
|
|
class MolmoPretrainedModel(PreTrainedModel): |
|
config_class = MolmoConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["MolmoDecoderLayer"] |
|
_skip_keys_device_placement = ["past_key_values"] |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
_supports_cache_class = True |
|
_supports_quantized_cache = True |
|
_supports_static_cache = True |
|
|
|
def _init_weights(self, module): |
|
if self.vision_backbone is not None: |
|
self.vision_backbone.reset_parameters() |
|
self.reset_non_vision_parameters() |
|
|
|
|
|
class MolmoModel(MolmoPretrainedModel): |
|
def __init__( |
|
self, |
|
config: MolmoConfig, |
|
init_params: bool = True |
|
): |
|
super().__init__(config) |
|
self.config = config |
|
self.__cache = BufferCache() |
|
|
|
|
|
if self.config.embedding_size is not None and self.config.embedding_size != self.config.vocab_size: |
|
if self.config.embedding_size < self.config.vocab_size: |
|
raise OLMoConfigurationError("embedding size should be at least as big as vocab size") |
|
elif self.config.embedding_size % 128 != 0: |
|
import warnings |
|
|
|
warnings.warn( |
|
"Embedding size is not a multiple of 128! This could hurt throughput performance.", UserWarning |
|
) |
|
|
|
self.activation_checkpointing_strategy: Optional[ActivationCheckpointingStrategy] = None |
|
self._activation_checkpoint_fn: Callable = activation_checkpoint_function(self.config) |
|
|
|
if not ( |
|
0 < self.config.block_group_size <= self.config.n_layers |
|
and self.config.n_layers % self.config.block_group_size == 0 |
|
): |
|
raise OLMoConfigurationError("n layers must be divisible by block group size") |
|
|
|
torch.backends.cuda.enable_flash_sdp(True) |
|
torch.backends.cuda.enable_mem_efficient_sdp(False) |
|
|
|
wte = None |
|
if self.config.additional_vocab_size is not None: |
|
wte = Embedding( |
|
config.embedding_size or config.vocab_size, |
|
config.additional_vocab_size, |
|
config.d_model, |
|
device=config.init_device, |
|
initializer_range=config.initializer_range, |
|
new_embed_initializer_range=config.new_embedding_init_range |
|
) |
|
else: |
|
wte=nn.Embedding( |
|
config.embedding_size or config.vocab_size, config.d_model, device=config.init_device |
|
) |
|
|
|
self.transformer = nn.ModuleDict( |
|
dict( |
|
wte=wte, |
|
emb_drop=Dropout(config.embedding_dropout), |
|
ln_f=RMSLayerNorm( |
|
config, |
|
size=config.d_model, |
|
eps=config.layer_norm_eps), |
|
) |
|
) |
|
|
|
layers = [ |
|
MolmoDecoderLayer(i, config, self.__cache) \ |
|
for i in range(config.n_layers) |
|
] |
|
self.transformer.update({"blocks": nn.ModuleList(layers)}) |
|
|
|
self.vision_backbone: Optional[OLMoVisionBackbone] = None |
|
if config.vision_backbone is not None: |
|
self.vision_backbone = MolmoVisionBackbone.build(config) |
|
|
|
if self.vision_backbone is not None: |
|
self.vision_backbone.reset_with_pretrained_weights() |
|
|
|
def set_activation_checkpointing(self, strategy: Optional[ActivationCheckpointingStrategy]): |
|
self.activation_checkpointing_strategy = strategy |
|
if self.config.block_group_size != 1: |
|
for block_group in self.transformer.block_groups: |
|
block_group.set_activation_checkpointing(strategy) |
|
else: |
|
for block in self.transformer.blocks: |
|
block.set_activation_checkpointing(strategy) |
|
|
|
if self.vision_backbone is not None: |
|
self.vision_backbone.set_activation_checkpointing(strategy) |
|
|
|
@property |
|
def device(self) -> torch.device: |
|
device: torch.device = self.transformer.wte.weight.device |
|
if device.type == "meta": |
|
return _non_meta_init_device(self.config) |
|
else: |
|
return device |
|
|
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor, |
|
input_embeddings: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
attention_bias: Optional[torch.Tensor] = None, |
|
response_mask: Optional[torch.Tensor] = None, |
|
images: Optional[torch.Tensor] = None, |
|
image_masks: Optional[torch.Tensor] = None, |
|
image_input_idx: Optional[torch.Tensor] = None, |
|
subsegment_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[Sequence[Tuple[torch.Tensor, torch.Tensor]]] = None, |
|
use_cache: bool = False, |
|
last_logits_only: bool = False, |
|
output_hidden_states: Optional[bool] = None, |
|
append_last_valid_logits: Optional[torch.Tensor] = None, |
|
) -> MolmoOutput: |
|
""" |
|
:param input_ids: A tensor of shape `(batch_size, seq_len)`. |
|
:param input_embeddings: A tensor of shape `(batch_size, seq_len, d_model)` with input |
|
embeddings. When provided, it is treated as the output of the input embedding layer. |
|
:param attention_mask: A tensor of shape `(batch_size, seq_len)` that indicates |
|
which input IDs are masked. A `1` value in the mask means that |
|
the corresponding input ID should *not* be ignored. A `0` means |
|
that the corresponding input ID is masked. |
|
|
|
This has the same meaning as the `attention_mask` in HuggingFace's `transformers` |
|
library. |
|
:param attention_bias: A tensor of shape `(batch_size, 1, seq_len, seq_len)`, |
|
`(1, 1, seq_len, seq_len)`, or `(seq_len, seq_len)`. This is used |
|
to introduce causal or other biases. |
|
|
|
If the tensor is a bool or byte tensor, a `True` or `1` at `attention_bias[:, :, i, j]` |
|
indicates that the i-th element in the sequence is allowed to attend to the j-th |
|
element in the sequence. |
|
|
|
If the tensor is a float tensor, it will just be added to the attention |
|
scores before the softmax. |
|
|
|
The default is causal, which corresponds to a lower-diagonal byte matrix of ones. |
|
:param response_mask: A tensor of shape `(batch_size, seq_len)` that indicates |
|
the response mask. A `1` value in the mask means that the corresponding token |
|
is a response token. A `0` means that the corresponding token is not |
|
a response token. |
|
:param past_key_values: Pre-computed keys and values for each attention block. |
|
Can be used to speed up sequential decoding. The `input_ids` which have |
|
their past given to this model should not be passed as `input_ids` as they have already been computed. |
|
:param use_cache: If `True`, return key and value tensors for each block. |
|
:param last_logits_only: If `True`, only compute the logits for the last token of each sequence. |
|
This can speed up decoding when you only care about the next token. |
|
""" |
|
output_hidden_states = output_hidden_states if output_hidden_states is not None else False |
|
|
|
if past_key_values: |
|
assert len(past_key_values) == self.config.n_layers |
|
|
|
has_image = images is not None |
|
|
|
assert not (has_image and input_embeddings is not None), "Cannot provide both images and input embeddings." |
|
assert not (has_image and past_key_values is not None), "Cached key and values should not be used with images." |
|
|
|
batch_size, seq_len = input_ids.size() if input_embeddings is None else input_embeddings.size()[:2] |
|
if past_key_values is None: |
|
past_length = 0 |
|
else: |
|
past_length = past_key_values[0][0].size(-2) |
|
|
|
if self.config.unconditioned and input_embeddings is None: |
|
images = None |
|
image_input_idx = None |
|
|
|
if self.config.use_position_ids and attention_mask is None: |
|
attention_mask = input_ids != -1 |
|
|
|
if subsegment_ids is not None: |
|
assert not use_cache, "Subsegment_ids cannot be used with cache." |
|
subsegment_mask = subsegment_ids.unsqueeze(2) <= subsegment_ids.unsqueeze(1) |
|
attention_mask = ( |
|
subsegment_mask.to(attention_mask.dtype) * |
|
attention_mask.unsqueeze(2) * |
|
attention_mask.unsqueeze(1)) |
|
if position_ids is None: |
|
raise ValueError(f"Positioned ids must be given if using subsegment_ids") |
|
else: |
|
if self.config.use_position_ids and position_ids is None: |
|
position_ids = torch.clamp( |
|
torch.cumsum(attention_mask.to(torch.int32), dim=-1) - 1, |
|
min=0, |
|
).broadcast_to((batch_size, attention_mask.shape[-1])) |
|
|
|
|
|
|
|
if input_ids is not None: |
|
input_ids = input_ids * (input_ids != -1).to(input_ids.dtype) |
|
x = self.transformer.wte(input_ids) if input_embeddings is None else input_embeddings |
|
|
|
num_image: Optional[int] = None |
|
if images is not None: |
|
|
|
|
|
image_features, cls_embed = self.vision_backbone(images, image_masks) |
|
num_image, num_patch = image_features.shape[1:3] |
|
assert image_input_idx.shape == (batch_size, num_image, num_patch) |
|
|
|
|
|
image_features = image_features.view(batch_size, num_image * num_patch, -1) |
|
image_input_idx = image_input_idx.view(batch_size, num_image * num_patch) |
|
|
|
valid = image_input_idx >= 0 |
|
batch_idx = torch.arange(batch_size, device=x.device) |
|
batch_idx = torch.tile(batch_idx[:, None], [1, image_features.shape[1]]) |
|
|
|
|
|
image_features = image_features.to(x.device) |
|
|
|
x[batch_idx[valid], image_input_idx[valid]] += image_features[valid] |
|
|
|
if self.config.use_cls_feature: |
|
x = torch.cat([x[:, :1], cls_embed, x[:, 1:-num_image]], dim=1) |
|
|
|
valid_images = torch.any( |
|
(image_input_idx >= 0).view(batch_size, num_image, num_patch), dim=-1 |
|
) |
|
valid_images = valid_images.to(attention_mask.dtype) |
|
attention_mask = torch.cat( |
|
[attention_mask[:, :1], valid_images, attention_mask[:, 1:-num_image]], |
|
dim=1, |
|
) |
|
position_ids = torch.clamp( |
|
torch.cumsum(attention_mask, dim=-1) - 1, |
|
min=0, |
|
).broadcast_to((batch_size, attention_mask.shape[-1])) |
|
|
|
|
|
|
|
x = self.transformer.emb_drop(x) |
|
|
|
|
|
if self.config.normalize_input_embeds: |
|
x = x * (self.config.d_model ** 0.5) |
|
|
|
|
|
if attention_mask is not None: |
|
|
|
if len(attention_mask.shape) == 2: |
|
attention_mask = attention_mask[:, :past_length + seq_len] |
|
attention_mask = attention_mask.to(dtype=torch.float).view(batch_size, -1)[:, None, None, :] |
|
else: |
|
attention_mask = attention_mask.unsqueeze(1).to(dtype=torch.float) |
|
attention_mask = (1.0 - attention_mask) * torch.finfo(attention_mask.dtype).min |
|
|
|
|
|
if ( |
|
attention_bias is not None |
|
or attention_mask is not None |
|
|
|
|
|
|
|
or past_key_values is not None |
|
): |
|
if attention_bias is None: |
|
attention_bias = get_causal_attention_bias(self.__cache, past_length + seq_len, x.device) |
|
elif attention_bias.dtype in (torch.int8, torch.bool): |
|
attention_bias = attention_bias.to(dtype=torch.float) |
|
attention_bias.masked_fill_(attention_bias == 0.0, torch.finfo(attention_bias.dtype).min) |
|
|
|
|
|
mask_len = seq_len |
|
if attention_mask is not None: |
|
mask_len = attention_mask.shape[-1] |
|
elif past_key_values is not None: |
|
mask_len = past_key_values[0][0].shape[-2] + seq_len |
|
attention_bias = attention_bias[:, :, :mask_len, :mask_len].to(dtype=torch.float) |
|
|
|
|
|
if attention_mask is not None: |
|
attention_bias = attention_bias + attention_mask |
|
|
|
|
|
|
|
ensure_finite_(attention_bias, check_neg_inf=True, check_pos_inf=False) |
|
|
|
attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = [] if use_cache else None |
|
|
|
|
|
all_hidden_states = [] |
|
|
|
|
|
for block_idx, layer in enumerate(self.transformer.blocks): |
|
if output_hidden_states: |
|
|
|
all_hidden_states.append(x) |
|
|
|
layer_past = None if past_key_values is None else past_key_values[block_idx] |
|
if should_checkpoint_block(self.activation_checkpointing_strategy, block_idx): |
|
|
|
x, cache = self._activation_checkpoint_fn( |
|
layer, x, attention_bias=attention_bias, position_ids=position_ids, drop_mask=response_mask, layer_past=layer_past, use_cache=use_cache |
|
) |
|
else: |
|
|
|
x, cache = layer(x, attention_bias=attention_bias, position_ids=position_ids, drop_mask=response_mask, layer_past=layer_past, use_cache=use_cache) |
|
|
|
if attn_key_values is not None: |
|
assert cache is not None |
|
attn_key_values.append(cache) |
|
|
|
if images is not None and self.config.use_cls_feature: |
|
assert num_image is not None |
|
x = torch.cat( |
|
[x[:, :1], x[:, num_image+1:], torch.zeros_like(x[:, :num_image])], |
|
dim=1, |
|
) |
|
|
|
if last_logits_only: |
|
|
|
if append_last_valid_logits is not None: |
|
last_valid_output = x[ |
|
torch.arange(x.shape[0], device=x.device), append_last_valid_logits.to(x.device)] |
|
x = last_valid_output.unsqueeze(1) |
|
else: |
|
x = x[:, -1, :].unsqueeze(1) |
|
|
|
|
|
|
|
x = self.transformer.ln_f(x) |
|
if output_hidden_states: |
|
|
|
all_hidden_states.append(x) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return MolmoOutput( |
|
last_hidden_states=x, |
|
attn_key_values=attn_key_values, |
|
hidden_states=tuple(all_hidden_states) \ |
|
if output_hidden_states else None |
|
) |
|
|
|
def num_params(self, include_embedding: bool = True) -> int: |
|
""" |
|
Get the total number of parameters. |
|
""" |
|
params = (np for np in self.named_parameters()) |
|
if not include_embedding: |
|
params = filter( |
|
lambda np: ".wte." not in np[0] and ".wpe." not in np[0], |
|
params, |
|
) |
|
return sum(p.numel() for _, p in params) |
|
|
|
@classmethod |
|
def from_checkpoint( |
|
cls, checkpoint_dir: PathOrStr, device: str = "cpu", |
|
checkpoint_type: Optional[CheckpointType] = None |
|
) -> OLMo: |
|
""" |
|
Load an OLMo model from a checkpoint. |
|
""" |
|
raise NotImplementedError("This method is not implemented yet.") |
|
|
|
def _make_state_dict_compatible( |
|
self, state_dict: Dict[str, torch.Tensor] |
|
) -> Tuple[Dict[str, torch.Tensor], Dict[str, Set[str]]]: |
|
""" |
|
Handles some cases where the state dict is valid yet may need to be transformed in order to |
|
be loaded. |
|
|
|
This modifies the state dict in-place and also returns it, along with a mapping of original key |
|
names to new key names in cases where the keys were simply renamed. That mapping can be used |
|
to make a corresponding optimizer state dict compatible as well. |
|
""" |
|
import re |
|
from fnmatch import fnmatch |
|
|
|
new_keys_to_og_keys: Dict[str, str] = {} |
|
|
|
|
|
|
|
|
|
for key in list(state_dict.keys()): |
|
state_dict[(new_key := key.replace("_fsdp_wrapped_module.", ""))] = state_dict.pop(key) |
|
new_keys_to_og_keys[new_key] = key |
|
|
|
|
|
if self.config.block_type == BlockType.sequential: |
|
for key in list(state_dict.keys()): |
|
if fnmatch(key, "transformer.*.norm.weight"): |
|
tensor = state_dict.pop(key) |
|
state_dict[(new_key := key.replace("norm.weight", "attn_norm.weight"))] = tensor |
|
new_keys_to_og_keys[new_key] = new_keys_to_og_keys[key] |
|
state_dict[(new_key := key.replace("norm.weight", "ff_norm.weight"))] = tensor.clone() |
|
new_keys_to_og_keys[new_key] = new_keys_to_og_keys[key] |
|
del new_keys_to_og_keys[key] |
|
elif fnmatch(key, "transformer.*.norm.bias"): |
|
tensor = state_dict.pop(key) |
|
state_dict[(new_key := key.replace("norm.bias", "attn_norm.bias"))] = tensor |
|
new_keys_to_og_keys[new_key] = new_keys_to_og_keys[key] |
|
state_dict[(new_key := key.replace("norm.bias", "ff_norm.bias"))] = tensor.clone() |
|
new_keys_to_og_keys[new_key] = new_keys_to_og_keys[key] |
|
del new_keys_to_og_keys[key] |
|
|
|
|
|
if "transformer.block_groups.0.0.attn_out.weight" in state_dict.keys(): |
|
state_dict_block_group_size = len( |
|
[k for k in state_dict.keys() if fnmatch(k, "transformer.block_groups.0.*.attn_out.weight")] |
|
) |
|
else: |
|
state_dict_block_group_size = 1 |
|
if self.config.block_group_size != state_dict_block_group_size: |
|
log.info( |
|
f"Regrouping state dict blocks from group size {state_dict_block_group_size} to " |
|
f"group size {self.config.block_group_size}" |
|
) |
|
|
|
|
|
if state_dict_block_group_size > 1: |
|
for key in list(state_dict.keys()): |
|
if (m := re.match(r"transformer.block_groups\.(\d+)\.(\d+)\..*", key)) is not None: |
|
group_idx, group_block_idx = int(m.group(1)), int(m.group(2)) |
|
block_idx = (group_idx * state_dict_block_group_size) + group_block_idx |
|
state_dict[ |
|
( |
|
new_key := key.replace( |
|
f"block_groups.{group_idx}.{group_block_idx}.", f"blocks.{block_idx}." |
|
) |
|
) |
|
] = state_dict.pop(key) |
|
new_keys_to_og_keys[new_key] = new_keys_to_og_keys.pop(key) |
|
|
|
if self.config.block_group_size > 1: |
|
|
|
for key in list(state_dict.keys()): |
|
if (m := re.match(r"transformer.blocks\.(\d+)\..*", key)) is not None: |
|
block_idx = int(m.group(1)) |
|
group_idx, group_block_idx = ( |
|
block_idx // self.config.block_group_size, |
|
block_idx % self.config.block_group_size, |
|
) |
|
state_dict[ |
|
( |
|
new_key := key.replace( |
|
f"blocks.{block_idx}.", f"block_groups.{group_idx}.{group_block_idx}." |
|
) |
|
) |
|
] = state_dict.pop(key) |
|
new_keys_to_og_keys[new_key] = new_keys_to_og_keys.pop(key) |
|
|
|
og_keys_to_new: Dict[str, Set[str]] = defaultdict(set) |
|
for new_key, og_key in new_keys_to_og_keys.items(): |
|
og_keys_to_new[og_key].add(new_key) |
|
|
|
return state_dict, og_keys_to_new |
|
|
|
|
|
class MolmoForCausalLM(PreTrainedModel): |
|
""" |
|
Extremely barebones HF model wrapper. |
|
""" |
|
config_class = MolmoConfig |
|
base_model_prefix = "model" |
|
_no_split_modules = ["MolmoDecoderLayer"] |
|
|
|
def __init__( |
|
self, |
|
config: MolmoConfig |
|
): |
|
super().__init__(config) |
|
|
|
|
|
config.init_device = "cpu" |
|
v_cfg = config.vision_backbone |
|
if v_cfg is not None: |
|
v_cfg = VisionBackboneConfig(**v_cfg) |
|
config.vision_backbone = v_cfg |
|
self.model = MolmoModel(config) |
|
|
|
if not config.weight_tying: |
|
self.lm_head = nn.Linear( |
|
config.d_model, |
|
config.embedding_size or config.vocab_size, |
|
bias=config.include_bias, |
|
device=config.init_device, |
|
) |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
attention_bias: Optional[torch.Tensor] = None, |
|
response_mask: Optional[torch.Tensor] = None, |
|
images: Optional[torch.Tensor] = None, |
|
image_masks: Optional[torch.Tensor] = None, |
|
image_input_idx: Optional[torch.Tensor] = None, |
|
subsegment_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
loss_masks: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
last_logits_only: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
append_last_valid_logits: Optional[torch.Tensor] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[ |
|
Cache |
|
] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
if use_cache is None: |
|
use_cache = self.config.use_cache |
|
|
|
if output_attentions: |
|
raise ValueError("output_attentions is not yet supported in OLMo") |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
input_embeddings=inputs_embeds, |
|
attention_mask=attention_mask, |
|
attention_bias=attention_bias, |
|
response_mask=response_mask, |
|
images=images, |
|
image_masks=image_masks, |
|
image_input_idx=image_input_idx, |
|
subsegment_ids=subsegment_ids, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
last_logits_only=last_logits_only, |
|
output_hidden_states=output_hidden_states, |
|
append_last_valid_logits=append_last_valid_logits, |
|
) |
|
|
|
x = outputs.last_hidden_states |
|
if self.config.weight_tying: |
|
logits = F.linear(x, self.model.transformer.wte.weight, None) |
|
else: |
|
logits = self.lm_head(x) |
|
|
|
if self.config.scale_logits: |
|
logits.mul_(1 / math.sqrt(self.config.d_model)) |
|
|
|
if self.config.final_logit_softcapping is not None: |
|
logits = logits / self.config.final_logit_softcapping |
|
logits = torch.tanh(logits) |
|
logits = logits * self.config.final_logit_softcapping |
|
|
|
if not last_logits_only and append_last_valid_logits is not None: |
|
last_valid_logit = logits[ |
|
torch.arange(logits.shape[0], device=logits.device), append_last_valid_logits] |
|
logits = torch.cat([logits[:, :-1], last_valid_logit[:, None]], dim=1) |
|
|
|
loss = None |
|
if labels is not None: |
|
if loss_masks is not None: |
|
loss_masks = loss_masks * (loss_masks > 0) |
|
batch_size_in_tokens = max(loss_masks.sum().item(), 1) |
|
labels = labels.long() |
|
labels.masked_fill_(~(loss_masks > 0), -100) |
|
labels = labels.view(-1) |
|
logits_for_loss = logits.to(torch.float32).view(-1, logits.size(-1)) |
|
loss_fct = torch.nn.CrossEntropyLoss(ignore_index=-100, reduction='none') |
|
loss = loss_fct(logits_for_loss, labels) |
|
loss = loss.view(input_ids.shape[0], -1) |
|
loss = loss * loss_masks |
|
loss = loss.sum() / batch_size_in_tokens |
|
use_zloss = getattr(self.config, "softmax_auxiliary_loss", False) |
|
if use_zloss: |
|
z_squared = logits_for_loss.logsumexp(-1).pow(2) |
|
z_loss = self.config.softmax_auxiliary_loss_scale * z_squared |
|
z_loss = z_loss.view(input_ids.shape[0], -1) |
|
z_loss = z_loss * loss_masks |
|
z_loss = z_loss.sum() / batch_size_in_tokens |
|
loss += z_loss |
|
else: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = torch.nn.CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.embedding_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.attn_key_values, |
|
hidden_states=outputs.hidden_states, |
|
) |
|
|
|
def can_generate(self) -> bool: |
|
return True |
|
|
|
@torch.no_grad() |
|
def generate( |
|
self, |
|
input_ids, |
|
images=None, |
|
attention_mask=None, |
|
image_masks=None, |
|
image_input_idx=None, |
|
generation_config=None, |
|
**kwargs, |
|
): |
|
if generation_config is not None: |
|
assert generation_config.use_cache |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
batch_size, seq_len = input_ids.shape |
|
|
|
max_new_tokens = generation_config.max_new_tokens |
|
assert max_new_tokens is not None |
|
mask_len = seq_len + max_new_tokens if self.config.use_position_ids else seq_len |
|
position_ids: Optional[torch.Tensor] = None |
|
append_last_valid_logits: Optional[torch.Tensor] = None |
|
if self.config.use_position_ids and attention_mask is None: |
|
attention_mask = input_ids != -1 |
|
position_ids = torch.clamp( |
|
torch.cumsum(attention_mask.to(torch.int32), dim=-1) - 1, |
|
min=0 |
|
) |
|
append_last_valid_logits = attention_mask.long().sum(dim=-1) - 1 |
|
attention_mask = torch.cat( |
|
[attention_mask, attention_mask.new_ones((batch_size, max_new_tokens))], |
|
dim=1, |
|
) |
|
if attention_mask is not None: |
|
assert attention_mask.shape == (batch_size, mask_len) |
|
|
|
out = super().generate( |
|
|
|
input_ids, |
|
generation_config, |
|
attention_mask=attention_mask, |
|
images=images, |
|
image_masks=image_masks, |
|
image_input_idx=image_input_idx, |
|
position_ids=position_ids, |
|
append_last_valid_logits=append_last_valid_logits, |
|
**kwargs, |
|
) |
|
|
|
return out |
|
|
|
@torch.no_grad() |
|
def generate_from_batch( |
|
self, |
|
batch: Dict[str, Any], |
|
generation_config: Optional[GenerationConfig] = None, |
|
**kwargs, |
|
): |
|
if generation_config is not None: |
|
assert generation_config.use_cache |
|
|
|
images = batch.get("images") |
|
image_masks = batch.get("image_masks") |
|
image_input_idx = batch.get("image_input_idx") |
|
|
|
|
|
input_ids = batch["input_ids"] |
|
batch_size, seq_len = input_ids.shape |
|
attention_mask = batch.get("attention_mask", None) |
|
max_new_tokens = generation_config.max_new_tokens |
|
assert max_new_tokens is not None |
|
mask_len = seq_len + max_new_tokens if self.config.use_position_ids else seq_len |
|
position_ids: Optional[torch.Tensor] = None |
|
append_last_valid_logits: Optional[torch.Tensor] = None |
|
if self.config.use_position_ids and attention_mask is None: |
|
attention_mask = input_ids != -1 |
|
position_ids = torch.clamp( |
|
torch.cumsum(attention_mask.to(torch.int32), dim=-1) - 1, |
|
min=0 |
|
) |
|
append_last_valid_logits = attention_mask.long().sum(dim=-1) - 1 |
|
attention_mask = torch.cat( |
|
[attention_mask, attention_mask.new_ones((batch_size, max_new_tokens))], |
|
dim=1, |
|
) |
|
if attention_mask is not None: |
|
assert attention_mask.shape == (batch_size, mask_len) |
|
|
|
out = super().generate( |
|
batch["input_ids"], |
|
generation_config, |
|
attention_mask=attention_mask, |
|
images=images, |
|
image_masks=image_masks, |
|
image_input_idx=image_input_idx, |
|
position_ids=position_ids, |
|
append_last_valid_logits=append_last_valid_logits, |
|
**kwargs, |
|
) |
|
|
|
return out |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple]] = None, **kwargs |
|
): |
|
if past_key_values: |
|
|
|
input_ids = input_ids[:, -1:] |
|
|
|
if self.config.use_position_ids: |
|
attention_mask = kwargs.get("attention_mask") |
|
images = kwargs.get("images") |
|
image_masks = kwargs.get("image_masks") |
|
image_input_idx = kwargs.get("image_input_idx") |
|
position_ids = kwargs.get("position_ids") |
|
append_last_valid_logits = kwargs.get("append_last_valid_logits") |
|
model_inputs = { |
|
"input_ids": input_ids, |
|
"attention_mask": attention_mask, |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": True, |
|
"last_logits_only": True, |
|
} |
|
if past_key_values is None: |
|
model_inputs["images"] = images |
|
model_inputs["image_masks"] = image_masks |
|
model_inputs["image_input_idx"] = image_input_idx |
|
model_inputs["append_last_valid_logits"] = append_last_valid_logits |
|
else: |
|
model_inputs = {"input_ids": input_ids, "past_key_values": past_key_values} |
|
|
|
model_inputs.update(kwargs) |
|
model_inputs["use_cache"] = kwargs.pop("use_cache", self.config.use_cache) |
|
return model_inputs |
|
|
|
def _update_model_kwargs_for_generation( |
|
self, |
|
outputs: ModelOutput, |
|
model_kwargs: Dict[str, Any], |
|
is_encoder_decoder: bool = False, |
|
num_new_tokens: int = 1, |
|
) -> Dict[str, Any]: |
|
if self.config.use_position_ids: |
|
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1 |
|
if "append_last_valid_logits" in model_kwargs: |
|
del model_kwargs["append_last_valid_logits"] |
|
if "images" in model_kwargs: |
|
del model_kwargs["images"] |
|
del model_kwargs["image_masks"] |
|
del model_kwargs["image_input_idx"] |
|
cache_name, cache = super()._extract_past_from_model_output(outputs) |
|
model_kwargs[cache_name] = cache |
|
model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + num_new_tokens |
|
return model_kwargs |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_input_embeddings(self) -> torch.nn.Module: |
|
return self.model.transformer.wte |
|
|
|
def set_input_embeddings(self, value: torch.nn.Module): |
|
self.model.transformer.wte = value |
|
|
|
def get_output_embeddings(self): |
|
if self.config.weight_tying: |
|
return self.model.transformer.wte |
|
else: |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, value: torch.nn.Module): |
|
if self.config.weight_tying: |
|
self.model.transformer.wte = value |
|
else: |
|
self.lm_head = value |
|
|
|
def tie_weights(self): |
|
""" |
|
This function is intentionally left as a no-op. |
|
|
|
Weight tying is handled as follows: |
|
- When the model is initialized, the `lm_head` layer is conditionally defined based on the `weight_tying` configuration. |
|
See: `if not config.weight_tying: self.transformer.update(...)` in `olmo/model.py`. |
|
- When computing logits, the `wte` weights are used directly if `weight_tying` is enabled. |
|
See: `if self.config.weight_tying: logits = F.linear(x, self.transformer.wte.weight, None)` in the `forward` method. |
|
|
|
Therefore, there is no need to explicitly tie the weights in this function. |
|
""" |
|
pass |
|
|
|
def resize_token_embeddings( |
|
self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None |
|
) -> torch.nn.Embedding: |
|
""" |
|
Resizes input token embeddings matrix of the model if `new_num_tokens != config.embedding_size`. |
|
|
|
Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method. |
|
|
|
Arguments: |
|
new_num_tokens (`int`, *optional*): |
|
The new number of tokens in the embedding matrix. Increasing the size will add newly initialized |
|
vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just |
|
returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything. |
|
pad_to_multiple_of (`int`, *optional*): |
|
If set will pad the embedding matrix to a multiple of the provided value. If `new_num_tokens` is set to |
|
`None` will just pad the embedding to a multiple of `pad_to_multiple_of`. |
|
|
|
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability |
|
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more |
|
details about this, or help on choosing the correct value for resizing, refer to this guide: |
|
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc |
|
|
|
Return: |
|
`torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model. |
|
|
|
Note: |
|
This method differs from the base class implementation by resizing the `embedding_size` attribute of the |
|
model configuration instead of the `vocab_size`. It also includes a warning if the resized `embedding_size` |
|
is less than the `vocab_size`. In OLMo, `embedding_size` refers to the dimensionality of the model's token |
|
embeddings, while `vocab_size` refers to the number of unique tokens in the vocabulary. |
|
""" |
|
model_embeds = self._resize_token_embeddings(new_num_tokens, pad_to_multiple_of) |
|
if new_num_tokens is None and pad_to_multiple_of is None: |
|
return model_embeds |
|
|
|
|
|
self.config.embedding_size = model_embeds.weight.shape[0] |
|
self.model.config.embedding_size = model_embeds.weight.shape[0] |
|
|
|
|
|
if self.config.embedding_size < self.config.vocab_size: |
|
warning_message = ( |
|
f"Resizing token embeddings to size {self.config.embedding_size}, which is less than the vocab size " |
|
f"{self.config.vocab_size} defined in the model configuration. Make sure your tokenizer's vocabulary " |
|
"size is less than or equal to the new token embedding size." |
|
) |
|
log.warning(warning_message) |
|
|
|
|
|
self.tie_weights() |
|
|
|
return model_embeds |
|
|