aps6992 commited on
Commit
912fdfe
·
1 Parent(s): 7439276

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -18
README.md CHANGED
@@ -13,7 +13,7 @@ An [adapter](https://adapterhub.ml) for the [`allenai/specter2_base`](https://hu
13
  This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
14
 
15
  **Aug 2023 Update:**
16
- 1. **The SPECTER 2.0 Base and proximity adapter models have been renamed in Hugging Face based upon usage patterns as follows:**
17
 
18
  |Old Name|New Name|
19
  |--|--|
@@ -24,11 +24,11 @@ This adapter was created for usage with the **[adapter-transformers](https://git
24
  However, for benchmarking purposes, please continue using the current version.**
25
 
26
 
27
- ## SPECTER 2.0
28
 
29
  <!-- Provide a quick summary of what the model is/does. -->
30
 
31
- SPECTER 2.0 is the successor to [SPECTER](https://huggingface.co/allenai/specter) and is capable of generating task specific embeddings for scientific tasks when paired with [adapters](https://huggingface.co/models?search=allenai/specter-2_).
32
  This is the base model to be used along with the adapters.
33
  Given the combination of title and abstract of a scientific paper or a short texual query, the model can be used to generate effective embeddings to be used in downstream applications.
34
 
@@ -59,7 +59,7 @@ adapter_name = model.load_adapter("allenai/specter2_adhoc_query", source="hf", s
59
 
60
  ## Model Description
61
 
62
- SPECTER 2.0 has been trained on over 6M triplets of scientific paper citations, which are available [here](https://huggingface.co/datasets/allenai/scirepeval/viewer/cite_prediction_new/evaluation).
63
  Post that it is trained with additionally attached task format specific adapter modules on all the [SciRepEval](https://huggingface.co/datasets/allenai/scirepeval) training tasks.
64
 
65
  Task Formats trained on:
@@ -86,9 +86,9 @@ It builds on the work done in [SciRepEval: A Multi-Format Benchmark for Scientif
86
 
87
  <!-- Provide the basic links for the model. -->
88
 
89
- - **Repository:** [https://github.com/allenai/SPECTER2_0](https://github.com/allenai/SPECTER2_0)
90
  - **Paper:** [https://api.semanticscholar.org/CorpusID:254018137](https://api.semanticscholar.org/CorpusID:254018137)
91
- - **Demo:** [Usage](https://github.com/allenai/SPECTER2_0/blob/main/README.md)
92
 
93
  # Uses
94
 
@@ -179,20 +179,11 @@ We also evaluate and establish a new SoTA on [MDCR](https://github.com/zoranmedi
179
  |[SPECTER](https://huggingface.co/allenai/specter)|54.7|57.4|68.0|(30.6, 25.5)|
180
  |[SciNCL](https://huggingface.co/malteos/scincl)|55.6|57.8|69.0|(32.6, 27.3)|
181
  |[SciRepEval-Adapters](https://huggingface.co/models?search=scirepeval)|61.9|59.0|70.9|(35.3, 29.6)|
182
- |[SPECTER 2.0-Adapters](https://huggingface.co/models?search=allenai/specter-2)|**62.3**|**59.2**|**71.2**|**(38.4, 33.0)**|
 
183
 
184
- Please cite the following works if you end up using SPECTER 2.0:
185
 
186
- [SPECTER paper](https://api.semanticscholar.org/CorpusID:215768677):
187
-
188
- ```bibtex
189
- @inproceedings{specter2020cohan,
190
- title={{SPECTER: Document-level Representation Learning using Citation-informed Transformers}},
191
- author={Arman Cohan and Sergey Feldman and Iz Beltagy and Doug Downey and Daniel S. Weld},
192
- booktitle={ACL},
193
- year={2020}
194
- }
195
- ```
196
  [SciRepEval paper](https://api.semanticscholar.org/CorpusID:254018137)
197
  ```bibtex
198
  @article{Singh2022SciRepEvalAM,
 
13
  This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
14
 
15
  **Aug 2023 Update:**
16
+ 1. **The SPECTER2 Base and proximity adapter models have been renamed in Hugging Face based upon usage patterns as follows:**
17
 
18
  |Old Name|New Name|
19
  |--|--|
 
24
  However, for benchmarking purposes, please continue using the current version.**
25
 
26
 
27
+ ## SPECTER2
28
 
29
  <!-- Provide a quick summary of what the model is/does. -->
30
 
31
+ SPECTER2 is the successor to [SPECTER](https://huggingface.co/allenai/specter) and is capable of generating task specific embeddings for scientific tasks when paired with [adapters](https://huggingface.co/models?search=allenai/specter-2_).
32
  This is the base model to be used along with the adapters.
33
  Given the combination of title and abstract of a scientific paper or a short texual query, the model can be used to generate effective embeddings to be used in downstream applications.
34
 
 
59
 
60
  ## Model Description
61
 
62
+ SPECTER2 has been trained on over 6M triplets of scientific paper citations, which are available [here](https://huggingface.co/datasets/allenai/scirepeval/viewer/cite_prediction_new/evaluation).
63
  Post that it is trained with additionally attached task format specific adapter modules on all the [SciRepEval](https://huggingface.co/datasets/allenai/scirepeval) training tasks.
64
 
65
  Task Formats trained on:
 
86
 
87
  <!-- Provide the basic links for the model. -->
88
 
89
+ - **Repository:** [https://github.com/allenai/SPECTER2](https://github.com/allenai/SPECTER2)
90
  - **Paper:** [https://api.semanticscholar.org/CorpusID:254018137](https://api.semanticscholar.org/CorpusID:254018137)
91
+ - **Demo:** [Usage](https://github.com/allenai/SPECTER2/blob/main/README.md)
92
 
93
  # Uses
94
 
 
179
  |[SPECTER](https://huggingface.co/allenai/specter)|54.7|57.4|68.0|(30.6, 25.5)|
180
  |[SciNCL](https://huggingface.co/malteos/scincl)|55.6|57.8|69.0|(32.6, 27.3)|
181
  |[SciRepEval-Adapters](https://huggingface.co/models?search=scirepeval)|61.9|59.0|70.9|(35.3, 29.6)|
182
+ |[SPECTER2 Base](allenai/specter2_base)|56.3|73.6|69.1|(38.0, 32.4)|
183
+ |[SPECTER2-Adapters](https://huggingface.co/models?search=allenai/specter-2)|**62.3**|**59.2**|**71.2**|**(38.4, 33.0)**|
184
 
185
+ Please cite the following works if you end up using SPECTER2:
186
 
 
 
 
 
 
 
 
 
 
 
187
  [SciRepEval paper](https://api.semanticscholar.org/CorpusID:254018137)
188
  ```bibtex
189
  @article{Singh2022SciRepEvalAM,