Update README.md
Browse files
README.md
CHANGED
@@ -8,7 +8,7 @@ datasets:
|
|
8 |
|
9 |
# Adapter `allenai/specter2_adhoc_query` for allenai/specter2
|
10 |
|
11 |
-
An [adapter](https://adapterhub.ml) for the `allenai/specter2` model that was trained on the [allenai/scirepeval](https://huggingface.co/datasets/allenai/scirepeval/) dataset.
|
12 |
|
13 |
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
|
14 |
|
@@ -26,7 +26,7 @@ Now, the adapter can be loaded and activated like this:
|
|
26 |
```python
|
27 |
from transformers import AutoAdapterModel
|
28 |
|
29 |
-
model = AutoAdapterModel.from_pretrained("allenai/
|
30 |
adapter_name = model.load_adapter("allenai/specter2_adhoc_query", source="hf", set_active=True)
|
31 |
```
|
32 |
|
@@ -50,7 +50,7 @@ Task Formats trained on:
|
|
50 |
- Proximity
|
51 |
- Adhoc Search
|
52 |
|
53 |
-
This is the adhoc search query specific adapter. For tasks where papers have to retrieved for a short textual query, use this adapter to encode the query and [allenai/specter2_proximity](https://huggingface.co/allenai/specter2_proximity) to encode the candidates
|
54 |
|
55 |
|
56 |
It builds on the work done in [SciRepEval: A Multi-Format Benchmark for Scientific Document Representations](https://api.semanticscholar.org/CorpusID:254018137) and we evaluate the trained model on this benchmark as well.
|
@@ -79,7 +79,7 @@ It builds on the work done in [SciRepEval: A Multi-Format Benchmark for Scientif
|
|
79 |
|
80 |
|Model|Name and HF link|Description|
|
81 |
|--|--|--|
|
82 |
-
|Retrieval*|[allenai/specter2_proximity](https://huggingface.co/allenai/
|
83 |
|Adhoc Query|[allenai/specter2_adhoc_query](https://huggingface.co/allenai/specter2_adhoc_query)|Encode short raw text queries for search tasks. (Candidate papers can be encoded with proximity)|
|
84 |
|Classification|[allenai/specter2_classification](https://huggingface.co/allenai/specter2_classification)|Encode papers to feed into linear classifiers as features|
|
85 |
|Regression|[allenai/specter2_regression](https://huggingface.co/allenai/specter2_regression)|Encode papers to feed into linear regressors as features|
|
@@ -90,10 +90,10 @@ It builds on the work done in [SciRepEval: A Multi-Format Benchmark for Scientif
|
|
90 |
from transformers import AutoTokenizer, AutoModel
|
91 |
|
92 |
# load model and tokenizer
|
93 |
-
tokenizer = AutoTokenizer.from_pretrained('allenai/
|
94 |
|
95 |
#load base model
|
96 |
-
model = AutoModel.from_pretrained('allenai/
|
97 |
|
98 |
#load the adapter(s) as per the required task, provide an identifier for the adapter in load_as argument and activate it
|
99 |
model.load_adapter("allenai/specter2_adhoc_query", source="hf", load_as="specter2_adhoc_query", set_active=True)
|
|
|
8 |
|
9 |
# Adapter `allenai/specter2_adhoc_query` for allenai/specter2
|
10 |
|
11 |
+
An [adapter](https://adapterhub.ml) for the [`allenai/specter2`](https://huggingface.co/allenai/specter2) model that was trained on the [allenai/scirepeval](https://huggingface.co/datasets/allenai/scirepeval/) dataset.
|
12 |
|
13 |
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
|
14 |
|
|
|
26 |
```python
|
27 |
from transformers import AutoAdapterModel
|
28 |
|
29 |
+
model = AutoAdapterModel.from_pretrained("allenai/specter2_base")
|
30 |
adapter_name = model.load_adapter("allenai/specter2_adhoc_query", source="hf", set_active=True)
|
31 |
```
|
32 |
|
|
|
50 |
- Proximity
|
51 |
- Adhoc Search
|
52 |
|
53 |
+
**This is the adhoc search query specific adapter. For tasks where papers have to retrieved for a short textual query, use this adapter to encode the query and [allenai/specter2_proximity](https://huggingface.co/allenai/specter2_proximity) to encode the candidates.**
|
54 |
|
55 |
|
56 |
It builds on the work done in [SciRepEval: A Multi-Format Benchmark for Scientific Document Representations](https://api.semanticscholar.org/CorpusID:254018137) and we evaluate the trained model on this benchmark as well.
|
|
|
79 |
|
80 |
|Model|Name and HF link|Description|
|
81 |
|--|--|--|
|
82 |
+
|Retrieval*|[allenai/specter2_proximity](https://huggingface.co/allenai/specter2)|Encode papers as queries and candidates eg. Link Prediction, Nearest Neighbor Search|
|
83 |
|Adhoc Query|[allenai/specter2_adhoc_query](https://huggingface.co/allenai/specter2_adhoc_query)|Encode short raw text queries for search tasks. (Candidate papers can be encoded with proximity)|
|
84 |
|Classification|[allenai/specter2_classification](https://huggingface.co/allenai/specter2_classification)|Encode papers to feed into linear classifiers as features|
|
85 |
|Regression|[allenai/specter2_regression](https://huggingface.co/allenai/specter2_regression)|Encode papers to feed into linear regressors as features|
|
|
|
90 |
from transformers import AutoTokenizer, AutoModel
|
91 |
|
92 |
# load model and tokenizer
|
93 |
+
tokenizer = AutoTokenizer.from_pretrained('allenai/specter2_base')
|
94 |
|
95 |
#load base model
|
96 |
+
model = AutoModel.from_pretrained('allenai/specter2_base')
|
97 |
|
98 |
#load the adapter(s) as per the required task, provide an identifier for the adapter in load_as argument and activate it
|
99 |
model.load_adapter("allenai/specter2_adhoc_query", source="hf", load_as="specter2_adhoc_query", set_active=True)
|