PEFT
English
hamishivi commited on
Commit
20033e2
·
1 Parent(s): f9a3db4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -3
README.md CHANGED
@@ -1,9 +1,85 @@
1
  ---
2
  library_name: peft
 
 
 
 
 
 
 
 
3
  ---
4
- ## Training procedure
5
 
6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  The following `bitsandbytes` quantization config was used during training:
8
  - quant_method: bitsandbytes
9
  - load_in_8bit: False
@@ -15,7 +91,7 @@ The following `bitsandbytes` quantization config was used during training:
15
  - bnb_4bit_quant_type: nf4
16
  - bnb_4bit_use_double_quant: True
17
  - bnb_4bit_compute_dtype: bfloat16
18
- ### Framework versions
19
 
 
20
 
21
- - PEFT 0.5.0
 
1
  ---
2
  library_name: peft
3
+ model-index:
4
+ - name: tulu-v2-qlora-7b
5
+ results: []
6
+ datasets:
7
+ - allenai/tulu-v2-sft-mixture
8
+ language:
9
+ - en
10
+ base_model: meta-llama/Llama-2-13b-hf
11
  ---
 
12
 
13
 
14
+ <img src="https://huggingface.co/datasets/allenai/blog-images/resolve/main/tulu-v2/Tulu%20V2%20banner.png" alt="TuluV2 banner" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
15
+
16
+
17
+ # Model Card for Tulu 2 QLoRA 13B
18
+
19
+ Tulu is a series of language models that are trained to act as helpful assistants.
20
+ Tulu 2 QLoRA 13B is a fine-tuned version of Llama 2 that was trained on a mix of publicly available, synthetic and human datasets.
21
+ We release the QLoRA modules alone, which can be merged with Llama 2 13b base.
22
+ We recommend **dequantising the model before merging**, as done in [this script](https://github.com/allenai/open-instruct/blob/main/open_instruct/merge_lora.py) (when using the `--qlora` flag).
23
+
24
+
25
+ ## Model description
26
+
27
+ - **Model type:** A model belonging to a suite of instruction and RLHF tuned chat models on a mix of publicly available, synthetic and human-created datasets.
28
+ - **Language(s) (NLP):** Primarily English
29
+ - **License:** [AI2 ImpACT](https://allenai.org/impact-license) Low-risk license.
30
+ - **Finetuned from model:** [meta-llama/Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf)
31
+
32
+ ### Model Sources
33
+
34
+ - **Repository:** https://github.com/allenai/https://github.com/allenai/open-instruct
35
+ - **Model Family:** Other models and the dataset are found in the [Tulu V2 collection](https://huggingface.co/collections/allenai/tulu-v2-suite-6551b56e743e6349aab45101).
36
+
37
+
38
+ ## Intended uses & limitations
39
+
40
+ The model was fine-tuned on a filtered and preprocessed of the [Tulu V2 mix dataset](https://huggingface.co/datasets/allenai/tulu-v2-sft-mixture), which contains a diverse range of human created instructions and synthetic dialogues generated primarily by other LLMs.
41
+
42
+
43
+ ## Bias, Risks, and Limitations
44
+
45
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
46
+
47
+ The Tulu models have not been aligned to generate safe completions within the RLHF phase or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so).
48
+ It is also unknown what the size and composition of the corpus was used to train the base Llama 2 models, however it is likely to have included a mix of Web data and technical sources like books and code. See the [Falcon 180B model card](https://huggingface.co/tiiuae/falcon-180B#training-data) for an example of this.
49
+
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 1e-4
55
+ - total_train_batch_size: 128
56
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
57
+ - lr_scheduler_type: linear
58
+ - lr_scheduler_warmup_ratio: 0.03
59
+ - num_epochs: 5.0
60
+ - LoRA Rank: 64
61
+ - LoRA Alpha: 16
62
+ - LoRA dropout: 0.1
63
+
64
+
65
+ ## Citation
66
+
67
+ If you find Tulu 2 is useful in your work, please cite it with:
68
+
69
+ ```
70
+ @misc{ivison2023changing,
71
+ title={Camels in a Changing Climate: Enhancing LM Adaptation with Tulu 2},
72
+ author={Hamish Ivison and Yizhong Wang and Valentina Pyatkin and Nathan Lambert and Matthew Peters and Pradeep Dasigi and Joel Jang and David Wadden and Noah A. Smith and Iz Beltagy and Hannaneh Hajishirzi},
73
+ year={2023},
74
+ archivePrefix={arXiv},
75
+ primaryClass={cs.CL}
76
+ }
77
+ ```
78
+
79
+ *Model card adapted from [Zephyr Beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta/blob/main/README.md)*
80
+
81
+ ## Bitsandbytes Config
82
+
83
  The following `bitsandbytes` quantization config was used during training:
84
  - quant_method: bitsandbytes
85
  - load_in_8bit: False
 
91
  - bnb_4bit_quant_type: nf4
92
  - bnb_4bit_use_double_quant: True
93
  - bnb_4bit_compute_dtype: bfloat16
 
94
 
95
+ ### Framework versions
96
 
97
+ - PEFT 0.5.0