--- tags: - merge - mergekit - lazymergekit - liminerity/M7-7b base_model: - liminerity/M7-7b - liminerity/M7-7b - liminerity/M7-7b - liminerity/M7-7b - liminerity/M7-7b --- # M7-8B-passthrough M7-8B-passthrough is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [liminerity/M7-7b](https://huggingface.co/liminerity/M7-7b) * [liminerity/M7-7b](https://huggingface.co/liminerity/M7-7b) * [liminerity/M7-7b](https://huggingface.co/liminerity/M7-7b) * [liminerity/M7-7b](https://huggingface.co/liminerity/M7-7b) * [liminerity/M7-7b](https://huggingface.co/liminerity/M7-7b) ## 🧩 Configuration ```yaml dtype: float16 merge_method: passthrough slices: - sources: - model: liminerity/M7-7b layer_range: [0,9] - sources: - model: liminerity/M7-7b layer_range: [5,14] - sources: - model: liminerity/M7-7b layer_range: [10,19] - sources: - model: liminerity/M7-7b layer_range: [15,24] - sources: - model: liminerity/M7-7b layer_range: [20,32] ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "allknowingroger/M7-8B-passthrough" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```