Fizzarolli commited on
Commit
32f2e0b
·
verified ·
1 Parent(s): c5b533d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +36 -267
README.md CHANGED
@@ -1,271 +1,40 @@
1
  ---
 
 
 
 
 
 
2
  language:
3
  - en
4
- - fr
5
- - de
6
- - es
7
- - it
8
- - pt
9
- - ru
10
- - zh
11
- - ja
12
- license: apache-2.0
13
- base_model: mistralai/Mistral-Nemo-Base-2407
14
- extra_gated_description: If you want to learn more about how we process your personal
15
- data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
16
  ---
17
-
18
- # Model Card for Mistral-Nemo-Instruct-2407
19
-
20
- The Mistral-Nemo-Instruct-2407 Large Language Model (LLM) is an instruct fine-tuned version of the [Mistral-Nemo-Base-2407](https://huggingface.co/mistralai/Mistral-Nemo-Base-2407). Trained jointly by Mistral AI and NVIDIA, it significantly outperforms existing models smaller or similar in size.
21
-
22
- For more details about this model please refer to our release [blog post](https://mistral.ai/news/mistral-nemo/).
23
-
24
- ## Key features
25
- - Released under the **Apache 2 License**
26
- - Pre-trained and instructed versions
27
- - Trained with a **128k context window**
28
- - Trained on a large proportion of **multilingual and code data**
29
- - Drop-in replacement of Mistral 7B
30
-
31
- ## Model Architecture
32
- Mistral Nemo is a transformer model, with the following architecture choices:
33
- - **Layers:** 40
34
- - **Dim:** 5,120
35
- - **Head dim:** 128
36
- - **Hidden dim:** 14,336
37
- - **Activation Function:** SwiGLU
38
- - **Number of heads:** 32
39
- - **Number of kv-heads:** 8 (GQA)
40
- - **Vocabulary size:** 2**17 ~= 128k
41
- - **Rotary embeddings (theta = 1M)**
42
-
43
- ## Metrics
44
-
45
- ### Main Benchmarks
46
-
47
- | Benchmark | Score |
48
- | --- | --- |
49
- | HellaSwag (0-shot) | 83.5% |
50
- | Winogrande (0-shot) | 76.8% |
51
- | OpenBookQA (0-shot) | 60.6% |
52
- | CommonSenseQA (0-shot) | 70.4% |
53
- | TruthfulQA (0-shot) | 50.3% |
54
- | MMLU (5-shot) | 68.0% |
55
- | TriviaQA (5-shot) | 73.8% |
56
- | NaturalQuestions (5-shot) | 31.2% |
57
-
58
- ### Multilingual Benchmarks (MMLU)
59
-
60
- | Language | Score |
61
- | --- | --- |
62
- | French | 62.3% |
63
- | German | 62.7% |
64
- | Spanish | 64.6% |
65
- | Italian | 61.3% |
66
- | Portuguese | 63.3% |
67
- | Russian | 59.2% |
68
- | Chinese | 59.0% |
69
- | Japanese | 59.0% |
70
-
71
- ## Usage
72
-
73
- The model can be used with three different frameworks
74
-
75
- - [`mistral_inference`](https://github.com/mistralai/mistral-inference): See [here](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407#mistral-inference)
76
- - [`transformers`](https://github.com/huggingface/transformers): See [here](#transformers)
77
- - [`NeMo`](https://github.com/NVIDIA/NeMo): See [nvidia/Mistral-NeMo-12B-Instruct](https://huggingface.co/nvidia/Mistral-NeMo-12B-Instruct)
78
-
79
- ### Mistral Inference
80
-
81
- #### Install
82
-
83
- It is recommended to use `mistralai/Mistral-Nemo-Instruct-2407` with [mistral-inference](https://github.com/mistralai/mistral-inference). For HF transformers code snippets, please keep scrolling.
84
-
85
- ```
86
- pip install mistral_inference
87
- ```
88
-
89
- #### Download
90
-
91
- ```py
92
- from huggingface_hub import snapshot_download
93
- from pathlib import Path
94
-
95
- mistral_models_path = Path.home().joinpath('mistral_models', 'Nemo-Instruct')
96
- mistral_models_path.mkdir(parents=True, exist_ok=True)
97
-
98
- snapshot_download(repo_id="mistralai/Mistral-Nemo-Instruct-2407", allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], local_dir=mistral_models_path)
99
- ```
100
-
101
- #### Chat
102
-
103
- After installing `mistral_inference`, a `mistral-chat` CLI command should be available in your environment. You can chat with the model using
104
-
105
- ```
106
- mistral-chat $HOME/mistral_models/Nemo-Instruct --instruct --max_tokens 256 --temperature 0.35
107
- ```
108
-
109
- *E.g.* Try out something like:
110
- ```
111
- How expensive would it be to ask a window cleaner to clean all windows in Paris. Make a reasonable guess in US Dollar.
112
- ```
113
-
114
- #### Instruct following
115
-
116
- ```py
117
- from mistral_inference.transformer import Transformer
118
- from mistral_inference.generate import generate
119
-
120
- from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
121
- from mistral_common.protocol.instruct.messages import UserMessage
122
- from mistral_common.protocol.instruct.request import ChatCompletionRequest
123
-
124
- tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json")
125
- model = Transformer.from_folder(mistral_models_path)
126
-
127
- prompt = "How expensive would it be to ask a window cleaner to clean all windows in Paris. Make a reasonable guess in US Dollar."
128
-
129
- completion_request = ChatCompletionRequest(messages=[UserMessage(content=prompt)])
130
-
131
- tokens = tokenizer.encode_chat_completion(completion_request).tokens
132
-
133
- out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.35, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
134
- result = tokenizer.decode(out_tokens[0])
135
-
136
- print(result)
137
- ```
138
-
139
- #### Function calling
140
-
141
- ```py
142
- from mistral_common.protocol.instruct.tool_calls import Function, Tool
143
- from mistral_inference.transformer import Transformer
144
- from mistral_inference.generate import generate
145
-
146
- from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
147
- from mistral_common.protocol.instruct.messages import UserMessage
148
- from mistral_common.protocol.instruct.request import ChatCompletionRequest
149
-
150
-
151
- tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json")
152
- model = Transformer.from_folder(mistral_models_path)
153
-
154
- completion_request = ChatCompletionRequest(
155
- tools=[
156
- Tool(
157
- function=Function(
158
- name="get_current_weather",
159
- description="Get the current weather",
160
- parameters={
161
- "type": "object",
162
- "properties": {
163
- "location": {
164
- "type": "string",
165
- "description": "The city and state, e.g. San Francisco, CA",
166
- },
167
- "format": {
168
- "type": "string",
169
- "enum": ["celsius", "fahrenheit"],
170
- "description": "The temperature unit to use. Infer this from the users location.",
171
- },
172
- },
173
- "required": ["location", "format"],
174
- },
175
- )
176
- )
177
- ],
178
- messages=[
179
- UserMessage(content="What's the weather like today in Paris?"),
180
- ],
181
- )
182
-
183
- tokens = tokenizer.encode_chat_completion(completion_request).tokens
184
-
185
- out_tokens, _ = generate([tokens], model, max_tokens=256, temperature=0.35, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
186
- result = tokenizer.decode(out_tokens[0])
187
-
188
- print(result)
189
- ```
190
-
191
- ### Transformers
192
-
193
- > [!IMPORTANT]
194
- > NOTE: Until a new release has been made, you need to install transformers from source:
195
- > ```sh
196
- > pip install git+https://github.com/huggingface/transformers.git
197
- > ```
198
-
199
- If you want to use Hugging Face `transformers` to generate text, you can do something like this.
200
-
201
- ```py
202
- from transformers import pipeline
203
-
204
- messages = [
205
- {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
206
- {"role": "user", "content": "Who are you?"},
207
- ]
208
- chatbot = pipeline("text-generation", model="mistralai/Mistral-Nemo-Instruct-2407",max_new_tokens=128)
209
- chatbot(messages)
210
- ```
211
-
212
- ## Function calling with `transformers`
213
-
214
- To use this example, you'll need `transformers` version 4.42.0 or higher. Please see the
215
- [function calling guide](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling)
216
- in the `transformers` docs for more information.
217
-
218
- ```python
219
- from transformers import AutoModelForCausalLM, AutoTokenizer
220
- import torch
221
-
222
- model_id = "mistralai/Mistral-Nemo-Instruct-2407"
223
- tokenizer = AutoTokenizer.from_pretrained(model_id)
224
-
225
- def get_current_weather(location: str, format: str):
226
- """
227
- Get the current weather
228
-
229
- Args:
230
- location: The city and state, e.g. San Francisco, CA
231
- format: The temperature unit to use. Infer this from the users location. (choices: ["celsius", "fahrenheit"])
232
- """
233
- pass
234
-
235
- conversation = [{"role": "user", "content": "What's the weather like in Paris?"}]
236
- tools = [get_current_weather]
237
-
238
- # format and tokenize the tool use prompt
239
- inputs = tokenizer.apply_chat_template(
240
- conversation,
241
- tools=tools,
242
- add_generation_prompt=True,
243
- return_dict=True,
244
- return_tensors="pt",
245
- )
246
-
247
- model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
248
-
249
- inputs.to(model.device)
250
- outputs = model.generate(**inputs, max_new_tokens=1000)
251
- print(tokenizer.decode(outputs[0], skip_special_tokens=True))
252
- ```
253
-
254
- Note that, for reasons of space, this example does not show a complete cycle of calling a tool and adding the tool call and tool
255
- results to the chat history so that the model can use them in its next generation. For a full tool calling example, please
256
- see the [function calling guide](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling),
257
- and note that Mistral **does** use tool call IDs, so these must be included in your tool calls and tool results. They should be
258
- exactly 9 alphanumeric characters.
259
-
260
- > [!TIP]
261
- > Unlike previous Mistral models, Mistral Nemo requires smaller temperatures. We recommend to use a temperature of 0.3.
262
-
263
- ## Limitations
264
-
265
- The Mistral Nemo Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance.
266
- It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
267
- make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.
268
-
269
- ## The Mistral AI Team
270
-
271
- Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Alok Kothari, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Augustin Garreau, Austin Birky, Bam4d, Baptiste Bout, Baudouin de Monicault, Blanche Savary, Carole Rambaud, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gaspard Blanchet, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Henri Roussez, Hichem Sattouf, Ian Mack, Jean-Malo Delignon, Jessica Chudnovsky, Justus Murke, Kartik Khandelwal, Lawrence Stewart, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Marjorie Janiewicz, Mickaël Seznec, Nicolas Schuhl, Niklas Muhs, Olivier de Garrigues, Patrick von Platen, Paul Jacob, Pauline Buche, Pavan Kumar Reddy, Perry Savas, Pierre Stock, Romain Sauvestre, Sagar Vaze, Sandeep Subramanian, Saurabh Garg, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibault Schueller, Thibaut Lavril, Thomas Wang, Théophile Gervet, Timothée Lacroix, Valera Nemychnikova, Wendy Shang, William El Sayed, William Marshall
 
1
  ---
2
+ license: apache-2.0
3
+ base_model:
4
+ - mistralai/Mistral-Nemo-Instruct-2407
5
+ tags:
6
+ - roleplay
7
+ - conversational
8
  language:
9
  - en
 
 
 
 
 
 
 
 
 
 
 
 
10
  ---
11
+ # Teleut 7b RP
12
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/634262af8d8089ebaefd410e/-yOYQdx9p3TjHLSq2RrRf.png)
13
+
14
+ A roleplay-focused LoRA finetune of Mistral Nemo Instruct. Methodology and hyperparams inspired by [SorcererLM](https://huggingface.co/rAIfle/SorcererLM-8x22b-bf16) and [Slush](https://huggingface.co/crestf411/Q2.5-32B-Slush).
15
+
16
+ ## Dataset
17
+ The worst mix of data you've ever seen. Like, seriously, you do not want to see the things that went into this model. It's bad.
18
+
19
+ ## Recommended Settings
20
+ Chat template: Mistral v3-Tekken
21
+ Recommended samplers (not the be-all-end-all, try some on your own!):
22
+ - Temp 1.25 / MinP 0.1
23
+ - Temp 1.03 / TopK 200 / MinP 0.05 / TopA 0.2
24
+
25
+ ## Hyperparams
26
+ ### General
27
+ - Epochs = 2
28
+ - LR = 6e-5
29
+ - LR Scheduler = Cosine
30
+ - Optimizer = Paged AdamW 8bit
31
+ - Effective batch size = 12
32
+ ### LoRA
33
+ - Rank = 16
34
+ - Alpha = 32
35
+ - Dropout = 0.25 (Inspiration: [Slush](https://huggingface.co/crestf411/Q2.5-32B-Slush))
36
+
37
+ ## Credits
38
+ Humongous thanks to the people who created the data. I would credit you all, but that would be cheating ;)
39
+ Big thanks to all Allura members, especially Toasty, for testing and emotional support ilya /platonic
40
+ NO thanks to Infermatic. They suck at hosting models