aloobun commited on
Commit
0d38a77
·
verified ·
1 Parent(s): a273963

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md CHANGED
@@ -1,3 +1,469 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:1195425
8
+ - loss:MSELoss
9
+ base_model: mixedbread-ai/mxbai-embed-large-v1
10
+ widget:
11
+ - source_sentence: At an outdoor event in an Asian-themed area, a crowd congregates
12
+ as one person in a yellow Chinese dragon costume confronts the camera.
13
+ sentences:
14
+ - Boy dressed in blue holds a toy.
15
+ - A man is smiling at his wife.
16
+ - Two young asian men are squatting.
17
+ - source_sentence: A man with a shopping cart is studying the shelves in a supermarket
18
+ aisle.
19
+ sentences:
20
+ - the animal is running
21
+ - The children are watching TV at home.
22
+ - Three young boys one is holding a camera and another is holding a green toy all
23
+ are wearing t-shirt and smiling.
24
+ - source_sentence: The door is open.
25
+ sentences:
26
+ - A girl is using an apple laptop with her headphones in her ears.
27
+ - There are three men in this picture, two are on motorbikes, one of the men has
28
+ a large piece of furniture on the back of his bike, the other is about to be handed
29
+ a piece of paper by a man in a white shirt.
30
+ - A large group of people are gathered outside of a brick building lit with spotlights.
31
+ - source_sentence: A small group of children are standing in a classroom and one of
32
+ them has a foot in a trashcan, which also has a rope leading out of it.
33
+ sentences:
34
+ - People are playing music.
35
+ - Children are swimming at the beach.
36
+ - Women are celebrating at a bar.
37
+ - source_sentence: A black dog is drinking next to a brown and white dog that is looking
38
+ at an orange ball in the lake, whilst a horse and rider passes behind.
39
+ sentences:
40
+ - Some men with jerseys are in a bar, watching a soccer match.
41
+ - the guy is dead
42
+ - There are two people running around a track in lane three and the one wearing
43
+ a blue shirt with a green thing over the eyes is just barely ahead of the guy
44
+ wearing an orange shirt and sunglasses.
45
+ pipeline_tag: sentence-similarity
46
+ library_name: sentence-transformers
47
+ metrics:
48
+ - pearson_cosine
49
+ - spearman_cosine
50
+ - negative_mse
51
+ model-index:
52
+ - name: SentenceTransformer based on mixedbread-ai/mxbai-embed-large-v1
53
+ results:
54
+ - task:
55
+ type: semantic-similarity
56
+ name: Semantic Similarity
57
+ dataset:
58
+ name: sts dev
59
+ type: sts-dev
60
+ metrics:
61
+ - type: pearson_cosine
62
+ value: 0.8654028138219636
63
+ name: Pearson Cosine
64
+ - type: spearman_cosine
65
+ value: 0.8873087539713633
66
+ name: Spearman Cosine
67
+ - task:
68
+ type: knowledge-distillation
69
+ name: Knowledge Distillation
70
+ dataset:
71
+ name: Unknown
72
+ type: unknown
73
+ metrics:
74
+ - type: negative_mse
75
+ value: -3.3795181661844254
76
+ name: Negative Mse
77
+ - task:
78
+ type: semantic-similarity
79
+ name: Semantic Similarity
80
+ dataset:
81
+ name: sts test
82
+ type: sts-test
83
+ metrics:
84
+ - type: pearson_cosine
85
+ value: 0.834023412201456
86
+ name: Pearson Cosine
87
+ - type: spearman_cosine
88
+ value: 0.8723901159121923
89
+ name: Spearman Cosine
90
+ ---
91
+
92
+ # SentenceTransformer based on mixedbread-ai/mxbai-embed-large-v1
93
+
94
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
95
+
96
+ ## Model Details
97
+
98
+ ### Model Description
99
+ - **Model Type:** Sentence Transformer
100
+ - **Base model:** [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) <!-- at revision e7857440379da569f68f19e8403b69cd7be26e50 -->
101
+ - **Maximum Sequence Length:** 512 tokens
102
+ - **Output Dimensionality:** 1024 dimensions
103
+ - **Similarity Function:** Cosine Similarity
104
+ <!-- - **Training Dataset:** Unknown -->
105
+ <!-- - **Language:** Unknown -->
106
+ <!-- - **License:** Unknown -->
107
+
108
+ ### Model Sources
109
+
110
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
111
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
112
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
113
+
114
+ ### Full Model Architecture
115
+
116
+ ```
117
+ SentenceTransformer(
118
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
119
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
120
+ )
121
+ ```
122
+
123
+ ## Usage
124
+
125
+ ### Direct Usage (Sentence Transformers)
126
+
127
+ First install the Sentence Transformers library:
128
+
129
+ ```bash
130
+ pip install -U sentence-transformers
131
+ ```
132
+
133
+ Then you can load this model and run inference.
134
+ ```python
135
+ from sentence_transformers import SentenceTransformer
136
+
137
+ # Download from the 🤗 Hub
138
+ model = SentenceTransformer("sentence_transformers_model_id")
139
+ # Run inference
140
+ sentences = [
141
+ 'A black dog is drinking next to a brown and white dog that is looking at an orange ball in the lake, whilst a horse and rider passes behind.',
142
+ 'Some men with jerseys are in a bar, watching a soccer match.',
143
+ 'There are two people running around a track in lane three and the one wearing a blue shirt with a green thing over the eyes is just barely ahead of the guy wearing an orange shirt and sunglasses.',
144
+ ]
145
+ embeddings = model.encode(sentences)
146
+ print(embeddings.shape)
147
+ # [3, 1024]
148
+
149
+ # Get the similarity scores for the embeddings
150
+ similarities = model.similarity(embeddings, embeddings)
151
+ print(similarities.shape)
152
+ # [3, 3]
153
+ ```
154
+
155
+ <!--
156
+ ### Direct Usage (Transformers)
157
+
158
+ <details><summary>Click to see the direct usage in Transformers</summary>
159
+
160
+ </details>
161
+ -->
162
+
163
+ <!--
164
+ ### Downstream Usage (Sentence Transformers)
165
+
166
+ You can finetune this model on your own dataset.
167
+
168
+ <details><summary>Click to expand</summary>
169
+
170
+ </details>
171
+ -->
172
+
173
+ <!--
174
+ ### Out-of-Scope Use
175
+
176
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
177
+ -->
178
+
179
+ ## Evaluation
180
+
181
+ ### Metrics
182
+
183
+ #### Semantic Similarity
184
+
185
+ * Datasets: `sts-dev` and `sts-test`
186
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
187
+
188
+ | Metric | sts-dev | sts-test |
189
+ |:--------------------|:-----------|:-----------|
190
+ | pearson_cosine | 0.8654 | 0.834 |
191
+ | **spearman_cosine** | **0.8873** | **0.8724** |
192
+
193
+ #### Knowledge Distillation
194
+
195
+ * Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
196
+
197
+ | Metric | Value |
198
+ |:-----------------|:------------|
199
+ | **negative_mse** | **-3.3795** |
200
+
201
+ <!--
202
+ ## Bias, Risks and Limitations
203
+
204
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
205
+ -->
206
+
207
+ <!--
208
+ ### Recommendations
209
+
210
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
211
+ -->
212
+
213
+ ## Training Details
214
+
215
+ ### Training Dataset
216
+
217
+ #### Unnamed Dataset
218
+
219
+
220
+ * Size: 1,195,425 training samples
221
+ * Columns: <code>sentence</code> and <code>label</code>
222
+ * Approximate statistics based on the first 1000 samples:
223
+ | | sentence | label |
224
+ |:--------|:----------------------------------------------------------------------------------|:--------------------------------------|
225
+ | type | string | list |
226
+ | details | <ul><li>min: 4 tokens</li><li>mean: 12.24 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> |
227
+ * Samples:
228
+ | sentence | label |
229
+ |:---------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------|
230
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>[-0.012967385351657867, 0.3716000020503998, 0.252520889043808, 0.7052643299102783, -0.15118499100208282, ...]</code> |
231
+ | <code>Children smiling and waving at camera</code> | <code>[0.15414997935295105, 0.6666896939277649, -0.3150098919868469, 1.0102407932281494, 0.4113735556602478, ...]</code> |
232
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>[-0.2989530563354492, 0.8571284413337708, -0.48532426357269287, 0.8935043215751648, 0.28524795174598694, ...]</code> |
233
+ * Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
234
+
235
+ ### Evaluation Dataset
236
+
237
+ #### Unnamed Dataset
238
+
239
+
240
+ * Size: 10,000 evaluation samples
241
+ * Columns: <code>sentence</code> and <code>label</code>
242
+ * Approximate statistics based on the first 1000 samples:
243
+ | | sentence | label |
244
+ |:--------|:----------------------------------------------------------------------------------|:--------------------------------------|
245
+ | type | string | list |
246
+ | details | <ul><li>min: 5 tokens</li><li>mean: 13.23 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> |
247
+ * Samples:
248
+ | sentence | label |
249
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|
250
+ | <code>Two women are embracing while holding to go packages.</code> | <code>[-0.35094621777534485, 0.4337681233882904, 0.22905530035495758, 0.9438946843147278, -1.0199058055877686, ...]</code> |
251
+ | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>[-0.37593328952789307, 0.6690596342086792, -0.14921458065509796, 0.7559019923210144, -0.4093412756919861, ...]</code> |
252
+ | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>[0.21969863772392273, 0.5065202713012695, -0.25664886832237244, 0.2569092810153961, -0.05940837413072586, ...]</code> |
253
+ * Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
254
+
255
+ ### Training Hyperparameters
256
+ #### Non-Default Hyperparameters
257
+
258
+ - `eval_strategy`: steps
259
+ - `per_device_train_batch_size`: 64
260
+ - `per_device_eval_batch_size`: 64
261
+ - `learning_rate`: 0.0001
262
+ - `num_train_epochs`: 1
263
+ - `warmup_ratio`: 0.1
264
+ - `fp16`: True
265
+ - `load_best_model_at_end`: True
266
+
267
+ #### All Hyperparameters
268
+ <details><summary>Click to expand</summary>
269
+
270
+ - `overwrite_output_dir`: False
271
+ - `do_predict`: False
272
+ - `eval_strategy`: steps
273
+ - `prediction_loss_only`: True
274
+ - `per_device_train_batch_size`: 64
275
+ - `per_device_eval_batch_size`: 64
276
+ - `per_gpu_train_batch_size`: None
277
+ - `per_gpu_eval_batch_size`: None
278
+ - `gradient_accumulation_steps`: 1
279
+ - `eval_accumulation_steps`: None
280
+ - `torch_empty_cache_steps`: None
281
+ - `learning_rate`: 0.0001
282
+ - `weight_decay`: 0.0
283
+ - `adam_beta1`: 0.9
284
+ - `adam_beta2`: 0.999
285
+ - `adam_epsilon`: 1e-08
286
+ - `max_grad_norm`: 1.0
287
+ - `num_train_epochs`: 1
288
+ - `max_steps`: -1
289
+ - `lr_scheduler_type`: linear
290
+ - `lr_scheduler_kwargs`: {}
291
+ - `warmup_ratio`: 0.1
292
+ - `warmup_steps`: 0
293
+ - `log_level`: passive
294
+ - `log_level_replica`: warning
295
+ - `log_on_each_node`: True
296
+ - `logging_nan_inf_filter`: True
297
+ - `save_safetensors`: True
298
+ - `save_on_each_node`: False
299
+ - `save_only_model`: False
300
+ - `restore_callback_states_from_checkpoint`: False
301
+ - `no_cuda`: False
302
+ - `use_cpu`: False
303
+ - `use_mps_device`: False
304
+ - `seed`: 42
305
+ - `data_seed`: None
306
+ - `jit_mode_eval`: False
307
+ - `use_ipex`: False
308
+ - `bf16`: False
309
+ - `fp16`: True
310
+ - `fp16_opt_level`: O1
311
+ - `half_precision_backend`: auto
312
+ - `bf16_full_eval`: False
313
+ - `fp16_full_eval`: False
314
+ - `tf32`: None
315
+ - `local_rank`: 0
316
+ - `ddp_backend`: None
317
+ - `tpu_num_cores`: None
318
+ - `tpu_metrics_debug`: False
319
+ - `debug`: []
320
+ - `dataloader_drop_last`: False
321
+ - `dataloader_num_workers`: 0
322
+ - `dataloader_prefetch_factor`: None
323
+ - `past_index`: -1
324
+ - `disable_tqdm`: False
325
+ - `remove_unused_columns`: True
326
+ - `label_names`: None
327
+ - `load_best_model_at_end`: True
328
+ - `ignore_data_skip`: False
329
+ - `fsdp`: []
330
+ - `fsdp_min_num_params`: 0
331
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
332
+ - `fsdp_transformer_layer_cls_to_wrap`: None
333
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
334
+ - `deepspeed`: None
335
+ - `label_smoothing_factor`: 0.0
336
+ - `optim`: adamw_torch
337
+ - `optim_args`: None
338
+ - `adafactor`: False
339
+ - `group_by_length`: False
340
+ - `length_column_name`: length
341
+ - `ddp_find_unused_parameters`: None
342
+ - `ddp_bucket_cap_mb`: None
343
+ - `ddp_broadcast_buffers`: False
344
+ - `dataloader_pin_memory`: True
345
+ - `dataloader_persistent_workers`: False
346
+ - `skip_memory_metrics`: True
347
+ - `use_legacy_prediction_loop`: False
348
+ - `push_to_hub`: False
349
+ - `resume_from_checkpoint`: None
350
+ - `hub_model_id`: None
351
+ - `hub_strategy`: every_save
352
+ - `hub_private_repo`: False
353
+ - `hub_always_push`: False
354
+ - `gradient_checkpointing`: False
355
+ - `gradient_checkpointing_kwargs`: None
356
+ - `include_inputs_for_metrics`: False
357
+ - `include_for_metrics`: []
358
+ - `eval_do_concat_batches`: True
359
+ - `fp16_backend`: auto
360
+ - `push_to_hub_model_id`: None
361
+ - `push_to_hub_organization`: None
362
+ - `mp_parameters`:
363
+ - `auto_find_batch_size`: False
364
+ - `full_determinism`: False
365
+ - `torchdynamo`: None
366
+ - `ray_scope`: last
367
+ - `ddp_timeout`: 1800
368
+ - `torch_compile`: False
369
+ - `torch_compile_backend`: None
370
+ - `torch_compile_mode`: None
371
+ - `dispatch_batches`: None
372
+ - `split_batches`: None
373
+ - `include_tokens_per_second`: False
374
+ - `include_num_input_tokens_seen`: False
375
+ - `neftune_noise_alpha`: None
376
+ - `optim_target_modules`: None
377
+ - `batch_eval_metrics`: False
378
+ - `eval_on_start`: False
379
+ - `use_liger_kernel`: False
380
+ - `eval_use_gather_object`: False
381
+ - `average_tokens_across_devices`: False
382
+ - `prompts`: None
383
+ - `batch_sampler`: batch_sampler
384
+ - `multi_dataset_batch_sampler`: proportional
385
+
386
+ </details>
387
+
388
+ ### Training Logs
389
+ | Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | negative_mse | sts-test_spearman_cosine |
390
+ |:---------:|:---------:|:-------------:|:---------------:|:-----------------------:|:------------:|:------------------------:|
391
+ | 0 | 0 | - | - | 0.5276 | -38.5866 | - |
392
+ | 0.0535 | 1000 | 0.1759 | - | - | - | - |
393
+ | 0.1071 | 2000 | 0.0992 | - | - | - | - |
394
+ | 0.1606 | 3000 | 0.0773 | - | - | - | - |
395
+ | 0.2141 | 4000 | 0.0669 | - | - | - | - |
396
+ | 0.2677 | 5000 | 0.0607 | 0.0502 | 0.8761 | -5.0231 | - |
397
+ | 0.3212 | 6000 | 0.0563 | - | - | - | - |
398
+ | 0.3748 | 7000 | 0.053 | - | - | - | - |
399
+ | 0.4283 | 8000 | 0.0502 | - | - | - | - |
400
+ | 0.4818 | 9000 | 0.0481 | - | - | - | - |
401
+ | 0.5354 | 10000 | 0.0464 | 0.0388 | 0.8830 | -3.8785 | - |
402
+ | 0.5889 | 11000 | 0.0448 | - | - | - | - |
403
+ | 0.6424 | 12000 | 0.0434 | - | - | - | - |
404
+ | 0.6960 | 13000 | 0.0422 | - | - | - | - |
405
+ | 0.7495 | 14000 | 0.0414 | - | - | - | - |
406
+ | **0.803** | **15000** | **0.0405** | **0.0338** | **0.8873** | **-3.3795** | **-** |
407
+ | 0.8566 | 16000 | 0.0398 | - | - | - | - |
408
+ | 0.9101 | 17000 | 0.0392 | - | - | - | - |
409
+ | 0.9636 | 18000 | 0.039 | - | - | - | - |
410
+ | 1.0 | 18679 | - | - | - | - | 0.8724 |
411
+
412
+ * The bold row denotes the saved checkpoint.
413
+
414
+ ### Framework Versions
415
+ - Python: 3.10.14
416
+ - Sentence Transformers: 3.3.1
417
+ - Transformers: 4.46.3
418
+ - PyTorch: 2.4.0
419
+ - Accelerate: 1.1.1
420
+ - Datasets: 3.1.0
421
+ - Tokenizers: 0.20.3
422
+
423
+ ## Citation
424
+
425
+ ### BibTeX
426
+
427
+ #### Sentence Transformers
428
+ ```bibtex
429
+ @inproceedings{reimers-2019-sentence-bert,
430
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
431
+ author = "Reimers, Nils and Gurevych, Iryna",
432
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
433
+ month = "11",
434
+ year = "2019",
435
+ publisher = "Association for Computational Linguistics",
436
+ url = "https://arxiv.org/abs/1908.10084",
437
+ }
438
+ ```
439
+
440
+ #### MSELoss
441
+ ```bibtex
442
+ @inproceedings{reimers-2020-multilingual-sentence-bert,
443
+ title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
444
+ author = "Reimers, Nils and Gurevych, Iryna",
445
+ booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
446
+ month = "11",
447
+ year = "2020",
448
+ publisher = "Association for Computational Linguistics",
449
+ url = "https://arxiv.org/abs/2004.09813",
450
+ }
451
+ ```
452
+
453
+ <!--
454
+ ## Glossary
455
+
456
+ *Clearly define terms in order to be accessible across audiences.*
457
+ -->
458
+
459
+ <!--
460
+ ## Model Card Authors
461
+
462
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
463
+ -->
464
+
465
+ <!--
466
+ ## Model Card Contact
467
+
468
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
469
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mixedbread-ai/mxbai-embed-large-v1",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 4096,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 16,
18
+ "num_hidden_layers": 8,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.46.3",
23
+ "type_vocab_size": 2,
24
+ "use_cache": false,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.46.3",
5
+ "pytorch": "2.4.0"
6
+ },
7
+ "prompts": {
8
+ "query": "Represent this sentence for searching relevant passages: ",
9
+ "passage": ""
10
+ },
11
+ "default_prompt_name": null,
12
+ "similarity_fn_name": "cosine"
13
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df516c281745e0401509d5f5262fb5fb9aada3cfa641f813c808c5b7e333da3f
3
+ size 534424512
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff