alpindale xzuyn commited on
Commit
dd99649
1 Parent(s): ca69d5b

Replace links with ones from Wayback Machine (#2)

Browse files

- Replace links with ones from Wayback Machine (33e01d6e96953be61b695385beaa1b28050caf31)


Co-authored-by: xzuyn <[email protected]>

Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -26,7 +26,7 @@ and consistently outperforms all the existing state-of-the-art opensource models
26
  - WizardLM-2 70B reaches top-tier reasoning capabilities and is the first choice in the same size.
27
  - WizardLM-2 7B is the fastest and achieves comparable performance with existing 10x larger opensource leading models.
28
 
29
- For more details of WizardLM-2 please read our [release blog post](https://wizardlm.github.io/WizardLM2) and upcoming paper.
30
 
31
 
32
  ## Model Details
@@ -37,7 +37,7 @@ For more details of WizardLM-2 please read our [release blog post](https://wiza
37
  * **Base model**: [mistral-community/Mixtral-8x22B-v0.1](https://huggingface.co/mistral-community/Mixtral-8x22B-v0.1)
38
  * **Parameters**: 141B
39
  * **Language(s)**: Multilingual
40
- * **Blog**: [Introducing WizardLM-2](https://wizardlm.github.io/WizardLM2)
41
  * **Repository**: [https://github.com/nlpxucan/WizardLM](https://github.com/nlpxucan/WizardLM)
42
  * **Paper**: WizardLM-2 (Upcoming)
43
  * **License**: Apache2.0
@@ -53,7 +53,7 @@ The WizardLM-2 8x22B even demonstrates highly competitive performance compared t
53
  Meanwhile, WizardLM-2 7B and WizardLM-2 70B are all the top-performing models among the other leading baselines at 7B to 70B model scales.
54
 
55
  <p align="center" width="100%">
56
- <a ><img src="https://raw.githubusercontent.com/WizardLM/WizardLM2/main/static/images/mtbench.png" alt="MTBench" style="width: 96%; min-width: 300px; display: block; margin: auto;"></a>
57
  </p>
58
 
59
 
@@ -67,7 +67,7 @@ We report the win:loss rate without tie:
67
  - WizardLM-2 7B is comparable with Qwen1.5-32B-Chat, and surpasses Qwen1.5-14B-Chat and Starling-LM-7B-beta.
68
 
69
  <p align="center" width="100%">
70
- <a ><img src="https://raw.githubusercontent.com/WizardLM/WizardLM2/main/static/images/winall.png" alt="Win" style="width: 96%; min-width: 300px; display: block; margin: auto;"></a>
71
  </p>
72
 
73
 
@@ -75,10 +75,10 @@ We report the win:loss rate without tie:
75
 
76
 
77
  ## Method Overview
78
- We built a **fully AI powered synthetic training system** to train WizardLM-2 models, please refer to our [blog](https://wizardlm.github.io/WizardLM2) for more details of this system.
79
 
80
  <p align="center" width="100%">
81
- <a ><img src="https://raw.githubusercontent.com/WizardLM/WizardLM2/main/static/images/exp_1.png" alt="Method" style="width: 96%; min-width: 300px; display: block; margin: auto;"></a>
82
  </p>
83
 
84
 
 
26
  - WizardLM-2 70B reaches top-tier reasoning capabilities and is the first choice in the same size.
27
  - WizardLM-2 7B is the fastest and achieves comparable performance with existing 10x larger opensource leading models.
28
 
29
+ For more details of WizardLM-2 please read our [release blog post](https://web.archive.org/web/20240415221214/https://wizardlm.github.io/WizardLM2/) and upcoming paper.
30
 
31
 
32
  ## Model Details
 
37
  * **Base model**: [mistral-community/Mixtral-8x22B-v0.1](https://huggingface.co/mistral-community/Mixtral-8x22B-v0.1)
38
  * **Parameters**: 141B
39
  * **Language(s)**: Multilingual
40
+ * **Blog**: [Introducing WizardLM-2](https://web.archive.org/web/20240415221214/https://wizardlm.github.io/WizardLM2/)
41
  * **Repository**: [https://github.com/nlpxucan/WizardLM](https://github.com/nlpxucan/WizardLM)
42
  * **Paper**: WizardLM-2 (Upcoming)
43
  * **License**: Apache2.0
 
53
  Meanwhile, WizardLM-2 7B and WizardLM-2 70B are all the top-performing models among the other leading baselines at 7B to 70B model scales.
54
 
55
  <p align="center" width="100%">
56
+ <a ><img src="https://web.archive.org/web/20240415175608im_/https://wizardlm.github.io/WizardLM2/static/images/mtbench.png" alt="MTBench" style="width: 96%; min-width: 300px; display: block; margin: auto;"></a>
57
  </p>
58
 
59
 
 
67
  - WizardLM-2 7B is comparable with Qwen1.5-32B-Chat, and surpasses Qwen1.5-14B-Chat and Starling-LM-7B-beta.
68
 
69
  <p align="center" width="100%">
70
+ <a ><img src="https://web.archive.org/web/20240415163303im_/https://wizardlm.github.io/WizardLM2/static/images/winall.png" alt="Win" style="width: 96%; min-width: 300px; display: block; margin: auto;"></a>
71
  </p>
72
 
73
 
 
75
 
76
 
77
  ## Method Overview
78
+ We built a **fully AI powered synthetic training system** to train WizardLM-2 models, please refer to our [blog](https://web.archive.org/web/20240415221214/https://wizardlm.github.io/WizardLM2/) for more details of this system.
79
 
80
  <p align="center" width="100%">
81
+ <a ><img src="https://web.archive.org/web/20240415163303im_/https://wizardlm.github.io/WizardLM2/static/images/exp_1.png" alt="Method" style="width: 96%; min-width: 300px; display: block; margin: auto;"></a>
82
  </p>
83
 
84