--- license: mit library_name: peft tags: - generated_from_trainer base_model: roberta-base metrics: - accuracy model-index: - name: lora-roberta-base-finetuned-captures results: [] --- # lora-roberta-base-finetuned-captures This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2959 - Accuracy: 0.9127 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.2353 | 0.9994 | 772 | 0.3571 | 0.9003 | | 0.228 | 2.0 | 1545 | 0.3288 | 0.9072 | | 0.2426 | 2.9994 | 2317 | 0.3198 | 0.9092 | | 0.213 | 4.0 | 3090 | 0.2959 | 0.9127 | | 0.1172 | 4.9968 | 3860 | 0.2959 | 0.9120 | ### Framework versions - PEFT 0.12.0 - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.0