File size: 5,393 Bytes
21bdf0a
5f33c26
 
 
21bdf0a
 
 
 
 
 
 
5f33c26
 
21bdf0a
 
 
 
5f33c26
44fd45d
 
 
21bdf0a
5f33c26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21bdf0a
 
5f33c26
21bdf0a
5f33c26
21bdf0a
 
 
 
 
5f33c26
21bdf0a
 
5f33c26
 
 
21bdf0a
 
 
 
 
 
5f33c26
 
 
44fd45d
 
 
5f33c26
21bdf0a
 
 
 
 
 
 
 
5f33c26
21bdf0a
44fd45d
21bdf0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f33c26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21bdf0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
---
language:
- es
license: cc-by-4.0
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
datasets:
- xtreme
metrics:
- precision
- recall
- f1
widget:
- text: Me llamo Álvaro y vivo en Barcelona (España).
- text: Marie Curie fue profesora en la Universidad de Paris.
- text: La Universidad de Salamanca es la universidad en activo más antigua de España.
pipeline_tag: token-classification
base_model: bert-base-multilingual-cased
model-index:
- name: SpanMarker with bert-base-multilingual-cased on xtreme/PAN-X.es
  results:
  - task:
      type: token-classification
      name: Named Entity Recognition
    dataset:
      name: xtreme/PAN-X.es
      type: xtreme
      split: eval
    metrics:
    - type: f1
      value: 0.9186626746506986
      name: F1
    - type: precision
      value: 0.9231154938993816
      name: Precision
    - type: recall
      value: 0.9142526071842411
      name: Recall
---

# SpanMarker with bert-base-multilingual-cased on xtreme/PAN-X.es

This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [xtreme/PAN-X.es](https://huggingface.co/datasets/xtreme) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) as the underlying encoder.

## Model Details

### Model Description
- **Model Type:** SpanMarker
- **Encoder:** [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased)
- **Maximum Sequence Length:** 512 tokens
- **Maximum Entity Length:** 8 words
- **Training Dataset:** [xtreme/PAN-X.es](https://huggingface.co/datasets/xtreme)
- **Languages:** es
- **License:** cc-by-4.0

### Model Sources

- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)

### Model Labels
| Label | Examples                                                                            |
|:------|:------------------------------------------------------------------------------------|
| LOC   | "Salamanca", "Paris", "Barcelona (España)"                                |
| ORG   | "ONU", "Fútbol Club Barcelona", "Museo Nacional del Prado" |
| PER   | "Fray Luis de León", "Leo Messi", "Álvaro Bartolomé"                                  |

## Uses

### Direct Use for Inference

```python
from span_marker import SpanMarkerModel

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("alvarobartt/bert-base-multilingual-cased-ner-spanish")
# Run inference
entities = model.predict("Marie Curie fue profesora en la Universidad de Paris.")
```

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics

| Training set          | Min | Median | Max |
|:----------------------|:----|:-------|:----|
| Sentence length       | 3   | 6.4642 | 64  |
| Entities per sentence | 1   | 1.2375 | 24  |

### Training Hyperparameters

- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2

### Training Results
| Epoch  | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|:------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
| 0.3998 | 1000 | 0.0388          | 0.8761               | 0.8641            | 0.8701        | 0.9223              |
| 0.7997 | 2000 | 0.0326          | 0.8995               | 0.8740            | 0.8866        | 0.9341              |
| 1.1995 | 3000 | 0.0277          | 0.9076               | 0.9019            | 0.9047        | 0.9424              |
| 1.5994 | 4000 | 0.0261          | 0.9143               | 0.9113            | 0.9128        | 0.9473              |
| 1.9992 | 5000 | 0.0234          | 0.9231               | 0.9143            | 0.9187        | 0.9502              |

### Framework Versions
- Python: 3.10.12
- SpanMarker: 1.3.1.dev
- Transformers: 4.33.3
- PyTorch: 2.0.1+cu118
- Datasets: 2.14.5
- Tokenizers: 0.13.3

## Citation

### BibTeX
```
@software{Aarsen_SpanMarker,
    author = {Aarsen, Tom},
    license = {Apache-2.0},
    title = {{SpanMarker for Named Entity Recognition}},
    url = {https://github.com/tomaarsen/SpanMarkerNER}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->