amirMohammadi commited on
Commit
fd50dea
1 Parent(s): 7c4241b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +201 -1
README.md CHANGED
@@ -6,4 +6,204 @@ language:
6
  pipeline_tag: text-generation
7
  tags:
8
  - PartAI
9
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  pipeline_tag: text-generation
7
  tags:
8
  - PartAI
9
+ ---
10
+
11
+ ---
12
+ library_name: transformers
13
+ license: llama3
14
+ language:
15
+ - en
16
+ - fa
17
+ tags:
18
+ - LLM
19
+ - llama-3
20
+ - PartAI
21
+ - conversational
22
+ ---
23
+
24
+ # Model Details
25
+
26
+ The Dorna models are a family of decoder-only models, specifically trained/fine-tuned on Persian data, developed by [Part AI](https://partdp.ai/). As an initial release, an 8B instruct model from this family is being made available.
27
+ Dorna-Llama3-8B-Instruct is built using the [Meta Llama 3 Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) model.
28
+
29
+
30
+ ## How to use
31
+
32
+ To test and use model freely on Hugging Face Spaces click [here](https://huggingface.co/spaces/PartAI/Dorna-Llama3-8B-Instruct)!
33
+
34
+ You can also run conversational inference using the Transformers Auto classes with the `generate()` function. Let's look at an example.
35
+
36
+ ```Python
37
+ import torch
38
+ import transformers
39
+ from transformers import AutoTokenizer, AutoModelForCausalLM
40
+
41
+
42
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
43
+ model = AutoModelForCausalLM.from_pretrained(
44
+ model_path,
45
+ torch_dtype=torch.bfloat16,
46
+ device_map="auto",
47
+ )
48
+
49
+ messages = [
50
+ {"role": "system",
51
+ "content": "You are a helpful Persian assistant. Please answer questions in the asked language."},
52
+ {"role": "user", "content": "کاغذ A4 بزرگ تر است یا A5؟"},
53
+ ]
54
+
55
+ input_ids = tokenizer.apply_chat_template(
56
+ messages,
57
+ add_generation_prompt=True,
58
+ return_tensors="pt"
59
+ ).to(model.device)
60
+
61
+ terminators = [
62
+ tokenizer.eos_token_id,
63
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
64
+ ]
65
+
66
+ outputs = model.generate(
67
+ input_ids,
68
+ max_new_tokens=256,
69
+ eos_token_id=terminators,
70
+ do_sample=True,
71
+ temperature=0.6,
72
+ top_p=0.9,
73
+ )
74
+ response = outputs[0][input_ids.shape[-1]:]
75
+ print(tokenizer.decode(response, skip_special_tokens=True))
76
+ ```
77
+
78
+ You can also use the notebook below to test the model in Google Colab.
79
+
80
+ <a href="https://colab.research.google.com/drive/1TmeZsN4Byi1EgAEQeOt27sPrZOWn5gBH?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Colab Code" width="87" height="15"/></a>
81
+
82
+
83
+ ## Evaluation
84
+
85
+ This model is evaluated on questions across various tasks, including Boolean Questions, Code Generation, Long Response, Math, News QA, Paraphrasing, General Knowledge, and Summarization. Most categories typically have two main difficulty levels: Hard and Easy.
86
+
87
+ Both human evaluation and automatic evaluation (with GPT-4 as the judge) are performed.
88
+
89
+ In both tables, **Dorna-8B-it** is used as an abbreviated form of **Dorna-Llama3-8B-Instruct**.
90
+
91
+ Overall human evaluation results are as follows:
92
+
93
+
94
+ |**Model Pairs** | **Parameters** |**Win %**|**Lose %**|**Tie %**|
95
+ |--------------------------|:---------:|:---------:|:---------:|:---------:|
96
+ | Dorna-8B-it **vs.** Meta-Llama-3-8B-Instruct | 8B |**36.94**| 17.39 | 45.67 |
97
+ | Dorna-8B-it **vs.** GPT 3.5 turbo-1106 | N.A. |**32.01**| 26.94 | 41.05 |
98
+ | Dorna-8B-it **vs.** Persian Mind | 7B |**55.77**| 10.49 | 33.74 |
99
+
100
+
101
+ Category-based human evaluation results are as follows:
102
+
103
+ Win/Lose/Tie % is reported for each category.
104
+
105
+ <!-- | **Model Pairs** | **Parameters** | **Bool Complex** | **Bool Easy** | **Code Gen** | **General Long Response** | **Historical Long Response** | **Math Complex** | **Math Easy** | **News QA Complex** | **News QA Easy** | **Paraphrasing** | **General Knowledge Easy** | **General Knowledge Hard** | **Summarization** |
106
+ |:----------------------------------------------|:------------:|:----------------:|:----------------:|:-------------:|:-----------------------:|:--------------------------:|:----------------:|:----------------:|:-----------------:|:----------------:|:---------------:|:------------------------:|:------------------------:|:---------------:|
107
+ | Dorna-8B-it **vs.** Meta-Llama-3-8B-Instruct | 8B | 0.25/0.25/0.5 | 0.28/0.35/0.38 | 0.6/0.1/0.3 | 0.8/0.08/0.12 | 0.4/0.3/0.3 | 0.28/0.08/0.65 | 0.47/0.00/0.53 | 0.55/0.07/0.38 | 0.43/0.15/0.42 | 0.1/0.05/0.85 | 0.31/0.2/0.49 | 0.59/0.13/0.28 | 0.28/0.2/0.53 |
108
+ | Dorna-8B-it **vs.** GPT 3.5 turbo-1106 | N.A. | 0.35/0.35/0.3 | 0.3/0.3/0.4 | 0.1/0.3/.06 | 0.2/0.45/0.35 | 0.46/0.27/0.27 | 0.25/0.1/0.65 | 0.05/0.1/0.85 | 0.12/0.35/0.53 | 0.15/0.1/0.75 | 0.25/0.15/0.6 | 0.3/0.32/0.38 | 0.22/0.53/0.25 | 0.35/0.55/0.1 |
109
+ | Dorna-8B-it **vs.** Persian Mind | 7B | 0.47/0.25/0.28 | 0.57/0.15/0.28 | 0.9/0.1/0.0 | 0.82/0.08/0.1 | 0.4/0.17/0.42 | 0.3/0.0/0.7 | 0.22/0.08/0.7 | 0.72/0.07/0.2 | 0.7/0.0/0.3 | 0.7/0.05/0.25 | 0.51/0.12/0.37 | 0.61/0.1/0.29 | 0.93/0.0/0.07 |
110
+ -->
111
+
112
+ <div style="overflow-x: auto;">
113
+ <table>
114
+ <thead>
115
+ <tr style="vertical-align: middle;">
116
+ <th style="white-space: nowrap; vertical-align: middle;"><strong>Model Pairs</strong></th>
117
+ <th style="white-space: nowrap; vertical-align: middle;"><strong>Parameters</strong></th>
118
+ <th style="white-space: nowrap; vertical-align: middle;"><strong>Bool Complex</strong></th>
119
+ <th style="white-space: nowrap; vertical-align: middle;"><strong>Bool Easy</strong></th>
120
+ <th style="white-space: nowrap; vertical-align: middle;"><strong>Code Gen</strong></th>
121
+ <th style="white-space: nowrap; vertical-align: middle;"><strong>General Long Response</strong></th>
122
+ <th style="white-space: nowrap; vertical-align: middle;"><strong>Historical Long Response</strong></th>
123
+ <th style="white-space: nowrap; vertical-align: middle;"><strong>Math Complex</strong></th>
124
+ <th style="white-space: nowrap; vertical-align: middle;"><strong>Math Easy</strong></th>
125
+ <th style="white-space: nowrap; vertical-align: middle;"><strong>News QA Complex</strong></th>
126
+ <th style="white-space: nowrap; vertical-align: middle;"><strong>News QA Easy</strong></th>
127
+ <th style="white-space: nowrap; vertical-align: middle;"><strong>Paraphrasing</strong></th>
128
+ <th style="white-space: nowrap; vertical-align: middle;"><strong>General Knowledge Easy</strong></th>
129
+ <th style="white-space: nowrap; vertical-align: middle;"><strong>General Knowledge Hard</strong></th>
130
+ <th style="white-space: nowrap; vertical-align: middle;"><strong>Summarization</strong></th>
131
+ </tr>
132
+ </thead>
133
+ <tbody>
134
+ <tr>
135
+ <td style="white-space: nowrap; vertical-align: middle;">Dorna-8B-it <strong>vs.</strong> Meta-Llama-3-8B-Instruct</td>
136
+ <td>8B</td>
137
+ <td>0.25/0.25/0.5</td>
138
+ <td>0.28/<strong>0.35</strong>/0.38</td>
139
+ <td><strong>0.6</strong>/0.1/0.3</td>
140
+ <td><strong>0.8</strong>/0.08/0.12</td>
141
+ <td><strong>0.4</strong>/0.3/0.3</td>
142
+ <td><strong>0.28</strong>/0.08/0.65</td>
143
+ <td><strong>0.47</strong>/0.00/0.53</td>
144
+ <td><strong>0.55</strong>/0.07/0.38</td>
145
+ <td><strong>0.43</strong>/0.15/0.42</td>
146
+ <td><strong>0.1</strong>/0.05/0.85</td>
147
+ <td><strong>0.31</strong>/0.2/0.49</td>
148
+ <td><strong>0.59</strong>/0.13/0.28</td>
149
+ <td><strong>0.28</strong>/0.2/0.53</td>
150
+ </tr>
151
+ <tr>
152
+ <td style="white-space: nowrap; vertical-align: middle;">Dorna-8B-it <strong>vs.</strong> GPT 3.5 turbo-1106</td>
153
+ <td>N.A.</td>
154
+ <td>0.35/0.35/0.3</td>
155
+ <td>0.3/0.3/0.4</td>
156
+ <td>0.1/<strong>0.3</strong>/.06</td>
157
+ <td>0.2/<strong>0.45</strong>/0.35</td>
158
+ <td><strong>0.46</strong>/0.27/0.27</td>
159
+ <td><strong>0.25</strong>/0.1/0.65</td>
160
+ <td>0.05/<strong>0.1</strong>/0.85</td>
161
+ <td>0.12/<strong>0.35</strong>/0.53</td>
162
+ <td><strong>0.15</strong>/0.1/0.75</td>
163
+ <td><strong>0.25</strong>/0.15/0.6</td>
164
+ <td>0.3/<strong>0.32</strong>/0.38</td>
165
+ <td>0.22/<strong>0.53</strong>/0.25</td>
166
+ <td>0.35/<strong>0.55</strong>/0.1</td>
167
+ </tr>
168
+ <tr>
169
+ <td style="white-space: nowrap; vertical-align: middle;">Dorna-8B-it <strong>vs.</strong> Persian Mind</td>
170
+ <td>7B</td>
171
+ <td><strong>0.47</strong>/0.25/0.28</td>
172
+ <td><strong>0.57</strong>/0.15/0.28</td>
173
+ <td><strong>0.9</strong>/0.1/0.0</td>
174
+ <td><strong>0.82</strong>/0.08/0.1</td>
175
+ <td><strong>0.4</strong>/0.17/0.42</td>
176
+ <td><strong>0.3</strong>/0.0/0.7</td>
177
+ <td><strong>0.22</strong>/0.08/0.7</td>
178
+ <td><strong>0.72</strong>/0.07/0.2</td>
179
+ <td><strong>0.7</strong>/0.0/0.3</td>
180
+ <td><strong>0.7</strong>/0.05/0.25</td>
181
+ <td><strong>0.51</strong>/0.12/0.37</td>
182
+ <td><strong>0.61</strong>/0.1/0.29</td>
183
+ <td><strong>0.93</strong>/0.0/0.07</td>
184
+ </tr>
185
+ </tbody>
186
+ </table>
187
+ </div>
188
+
189
+
190
+
191
+ Automatic evaluation results are as follows:
192
+
193
+
194
+ | **Model Pairs** | **Parameters** | **Overall Win Rate %** | **Easy Win Rate %** | **Hard Win Rate %** |
195
+ |----------------------------------------|:--------------:|:----------------------:|:-------------------:|:-------------------:|
196
+ | Dorna-8B-it **vs.** Llama 3 base | 8B | **58.96** | **56.00** | **64.49** |
197
+ | Dorna-8B-it **vs.** Part Mistral | 7B | **77.20** | **73.00** | **85.05** |
198
+ | Dorna-8B-it **vs.** Persian Mind | 7B | **90.88** | **87.50** | **97.20** |
199
+ | Dorna-8B-it **vs.** Neuraorca Gemma 7b | 7B | **86.32** | **86.50** | **85.98** |
200
+ | Dorna-8B-it **vs.** Maral 7b | 7B | **97.39** | **97.00** | **98.13** |
201
+ | Dorna-8B-it **vs.** PersianLlama 7b | 7B | **98.70** | **98.00** | **100.00** |
202
+ | Dorna-8B-it **vs.** Aya-23-8B | 8B | **52.77** | **56.50** | 45.79 |
203
+ | Dorna-8B-it **vs.** Aya-23-35B | 35B | 45.93 | **54.00** | 30.84 |
204
+ | Dorna-8B-it **vs.** Command R | 35B | **58.63** | **61.00** | **54.21** |
205
+
206
+
207
+ ## Contact us
208
+
209
+ If you have any questions regarding this model, you can reach us via the [community](https://huggingface.co/PartAI/Dorna-Llama3-8B-Instruct/discussions) on Hugging Face.