--- license: llama3 language: - en - fa pipeline_tag: text-generation --- # Model Details This Repository is a 4-bit quantized version of [Dorna-Llama3-8B-Instruct](https://huggingface.co/PartAI/Dorna-Llama3-8B-Instruct) model for efficient memory usage. Dorna model is a decoder-only model, specifically trained/fine-tuned on Persian data. [Flash Attention 2](https://arxiv.org/abs/2307.08691) is also integrated for faster inference. ## Benefits - **Reduced Memory Usage**: 4-bit quantization lowers memory requirements. - **Faster Inference**: Flash Attention 2 speeds up processing. - **Easy Deployment**: No need for additional libraries like LlamaCPP or Candle. - **Ready to Use**: Compatible with Langchain, Haystack, LlamaIndex 2, and more. - **Google Colab Friendly**: Can run on Google Colab free tier with T4 GPU (less than 15 GB of GPU RAM). ## How to use You can run conversational inference using the Transformers Auto classes with the `generate()` function. Let's look at an example. ```Python import torch import transformers from transformers import AutoTokenizer, AutoModelForCausalLM model_path = "amirMohammadi/Dorna-Llama3-8B-Instruct-Quantized4Bit" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.bfloat16, device_map="auto", ) messages = [ {"role": "system", "content": "You are a helpful Persian assistant. Please answer questions in the asked language."}, {"role": "user", "content": "اصفهان بزرگ تر است یا قم؟"}, ] input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = model.generate( input_ids, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) response = outputs[0][input_ids.shape[-1]:] print(tokenizer.decode(response, skip_special_tokens=True)) ``` ## Evaluation of Non-Quantized version This model is evaluated on questions across various tasks, including Boolean Questions, Code Generation, Long Response, Math, News QA, Paraphrasing, General Knowledge, and Summarization. Most categories typically have two main difficulty levels: Hard and Easy. Both human evaluation and automatic evaluation (with GPT-4 as the judge) are performed. In both tables, **Dorna-8B-it** is used as an abbreviated form of **Dorna-Llama3-8B-Instruct**. Overall human evaluation results are as follows: |**Model Pairs** | **Parameters** |**Win %**|**Lose %**|**Tie %**| |--------------------------|:---------:|:---------:|:---------:|:---------:| | Dorna-8B-it **vs.** Meta-Llama-3-8B-Instruct | 8B |**36.94**| 17.39 | 45.67 | | Dorna-8B-it **vs.** GPT 3.5 turbo-1106 | N.A. |**32.01**| 26.94 | 41.05 | | Dorna-8B-it **vs.** Persian Mind | 7B |**55.77**| 10.49 | 33.74 | Category-based human evaluation results are as follows: Win/Lose/Tie % is reported for each category.
Model Pairs Parameters Bool Complex Bool Easy Code Gen General Long Response Historical Long Response Math Complex Math Easy News QA Complex News QA Easy Paraphrasing General Knowledge Easy General Knowledge Hard Summarization
Dorna-8B-it vs. Meta-Llama-3-8B-Instruct 8B 0.25/0.25/0.5 0.28/0.35/0.38 0.6/0.1/0.3 0.8/0.08/0.12 0.4/0.3/0.3 0.28/0.08/0.65 0.47/0.00/0.53 0.55/0.07/0.38 0.43/0.15/0.42 0.1/0.05/0.85 0.31/0.2/0.49 0.59/0.13/0.28 0.28/0.2/0.53
Dorna-8B-it vs. GPT 3.5 turbo-1106 N.A. 0.35/0.35/0.3 0.3/0.3/0.4 0.1/0.3/.06 0.2/0.45/0.35 0.46/0.27/0.27 0.25/0.1/0.65 0.05/0.1/0.85 0.12/0.35/0.53 0.15/0.1/0.75 0.25/0.15/0.6 0.3/0.32/0.38 0.22/0.53/0.25 0.35/0.55/0.1
Dorna-8B-it vs. Persian Mind 7B 0.47/0.25/0.28 0.57/0.15/0.28 0.9/0.1/0.0 0.82/0.08/0.1 0.4/0.17/0.42 0.3/0.0/0.7 0.22/0.08/0.7 0.72/0.07/0.2 0.7/0.0/0.3 0.7/0.05/0.25 0.51/0.12/0.37 0.61/0.1/0.29 0.93/0.0/0.07
Automatic evaluation results are as follows: | **Model Pairs** | **Parameters** | **Overall Win Rate %** | **Easy Win Rate %** | **Hard Win Rate %** | |----------------------------------------|:--------------:|:----------------------:|:-------------------:|:-------------------:| | Dorna-8B-it **vs.** Llama 3 base | 8B | **58.96** | **56.00** | **64.49** | | Dorna-8B-it **vs.** Part Mistral | 7B | **77.20** | **73.00** | **85.05** | | Dorna-8B-it **vs.** Persian Mind | 7B | **90.88** | **87.50** | **97.20** | | Dorna-8B-it **vs.** Neuraorca Gemma 7b | 7B | **86.32** | **86.50** | **85.98** | | Dorna-8B-it **vs.** Maral 7b | 7B | **97.39** | **97.00** | **98.13** | | Dorna-8B-it **vs.** PersianLlama 7b | 7B | **98.70** | **98.00** | **100.00** | | Dorna-8B-it **vs.** Aya-23-8B | 8B | **52.77** | **56.50** | 45.79 | | Dorna-8B-it **vs.** Aya-23-35B | 35B | 45.93 | **54.00** | 30.84 | | Dorna-8B-it **vs.** Command R | 35B | **58.63** | **61.00** | **54.21** | ## Contact us If you have any questions regarding this model, you can reach us via the [community](https://huggingface.co/amirMohammadi/Dorna-Llama3-8B-Instruct-Quantized4Bit/discussions) on Hugging Face.