File size: 2,191 Bytes
411a7fb 8b94c3a 5ab78a7 8b94c3a 411a7fb 8b94c3a 411a7fb 8b94c3a 411a7fb 5ab78a7 8b94c3a 5ab78a7 411a7fb 8b94c3a 411a7fb 8b94c3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: mit
base_model: EleutherAI/gpt-neo-125m
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: gpt-neo-125m_hh_reward
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt-neo-125m_hh_reward
This model is a fine-tuned version of [EleutherAI/gpt-neo-125m](https://huggingface.co/EleutherAI/gpt-neo-125m) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7503
- Rewards/chosen: -4.2523
- Rewards/rejected: -4.3731
- Rewards/accuracies: 0.5625
- Rewards/margins: 0.1208
- Logps/rejected: -168.5040
- Logps/chosen: -147.3926
- Logits/rejected: -11.6528
- Logits/chosen: -11.5062
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 150
- training_steps: 4050
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.8022 | 0.2 | 2000 | 0.7737 | -4.8718 | -5.0523 | 0.5724 | 0.1805 | -175.2956 | -153.5872 | -11.7730 | -11.6673 |
| 0.7336 | 0.4 | 4000 | 0.7503 | -4.2523 | -4.3731 | 0.5625 | 0.1208 | -168.5040 | -147.3926 | -11.6528 | -11.5062 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.0.1+cu117
- Datasets 2.17.1
- Tokenizers 0.15.2
|