ammumadhu commited on
Commit
cca29bf
1 Parent(s): 1a373f7

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,981 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: sentence-transformers
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - dataset_size:10K<n<100K
10
+ - loss:MatryoshkaLoss
11
+ - loss:MultipleNegativesRankingLoss
12
+ base_model: l3cube-pune/indic-sentence-similarity-sbert
13
+ metrics:
14
+ - pearson_cosine
15
+ - spearman_cosine
16
+ - pearson_manhattan
17
+ - spearman_manhattan
18
+ - pearson_euclidean
19
+ - spearman_euclidean
20
+ - pearson_dot
21
+ - spearman_dot
22
+ - pearson_max
23
+ - spearman_max
24
+ widget:
25
+ - source_sentence: Excuse me.
26
+ sentences:
27
+ - um pardon me
28
+ - A man is opening mail.
29
+ - The girls are indoors.
30
+ - source_sentence: Double pig.
31
+ sentences:
32
+ - Ah, triple pig!
33
+ - a girl poses for camera
34
+ - Girls dance together.
35
+ - source_sentence: People pose.
36
+ sentences:
37
+ - People are smiling.
38
+ - I know a few old ones.
39
+ - The boy fell off his bike.
40
+ - source_sentence: A man sings.
41
+ sentences:
42
+ - People singing
43
+ - A man is playing golf.
44
+ - The women are eating bread.
45
+ - source_sentence: Then he ran.
46
+ sentences:
47
+ - He then started to run.
48
+ - A man plays the flute.
49
+ - A couple sit on the couch
50
+ pipeline_tag: sentence-similarity
51
+ model-index:
52
+ - name: SentenceTransformer based on l3cube-pune/indic-sentence-similarity-sbert
53
+ results:
54
+ - task:
55
+ type: semantic-similarity
56
+ name: Semantic Similarity
57
+ dataset:
58
+ name: sts dev 768
59
+ type: sts-dev-768
60
+ metrics:
61
+ - type: pearson_cosine
62
+ value: 0.8608857207512975
63
+ name: Pearson Cosine
64
+ - type: spearman_cosine
65
+ value: 0.8662860178080238
66
+ name: Spearman Cosine
67
+ - type: pearson_manhattan
68
+ value: 0.858692209351004
69
+ name: Pearson Manhattan
70
+ - type: spearman_manhattan
71
+ value: 0.8612472945208892
72
+ name: Spearman Manhattan
73
+ - type: pearson_euclidean
74
+ value: 0.858472048314985
75
+ name: Pearson Euclidean
76
+ - type: spearman_euclidean
77
+ value: 0.8611276457994067
78
+ name: Spearman Euclidean
79
+ - type: pearson_dot
80
+ value: 0.8258747949887901
81
+ name: Pearson Dot
82
+ - type: spearman_dot
83
+ value: 0.8259736371824636
84
+ name: Spearman Dot
85
+ - type: pearson_max
86
+ value: 0.8608857207512975
87
+ name: Pearson Max
88
+ - type: spearman_max
89
+ value: 0.8662860178080238
90
+ name: Spearman Max
91
+ - task:
92
+ type: semantic-similarity
93
+ name: Semantic Similarity
94
+ dataset:
95
+ name: sts dev 512
96
+ type: sts-dev-512
97
+ metrics:
98
+ - type: pearson_cosine
99
+ value: 0.8594405198312016
100
+ name: Pearson Cosine
101
+ - type: spearman_cosine
102
+ value: 0.8648571300070264
103
+ name: Spearman Cosine
104
+ - type: pearson_manhattan
105
+ value: 0.8574291650964095
106
+ name: Pearson Manhattan
107
+ - type: spearman_manhattan
108
+ value: 0.8598780673781499
109
+ name: Spearman Manhattan
110
+ - type: pearson_euclidean
111
+ value: 0.8574540367546871
112
+ name: Pearson Euclidean
113
+ - type: spearman_euclidean
114
+ value: 0.8600722932569861
115
+ name: Spearman Euclidean
116
+ - type: pearson_dot
117
+ value: 0.822340474813523
118
+ name: Pearson Dot
119
+ - type: spearman_dot
120
+ value: 0.8226609928783558
121
+ name: Spearman Dot
122
+ - type: pearson_max
123
+ value: 0.8594405198312016
124
+ name: Pearson Max
125
+ - type: spearman_max
126
+ value: 0.8648571300070264
127
+ name: Spearman Max
128
+ - task:
129
+ type: semantic-similarity
130
+ name: Semantic Similarity
131
+ dataset:
132
+ name: sts dev 256
133
+ type: sts-dev-256
134
+ metrics:
135
+ - type: pearson_cosine
136
+ value: 0.8506120561071212
137
+ name: Pearson Cosine
138
+ - type: spearman_cosine
139
+ value: 0.8575982860981437
140
+ name: Spearman Cosine
141
+ - type: pearson_manhattan
142
+ value: 0.852829777566948
143
+ name: Pearson Manhattan
144
+ - type: spearman_manhattan
145
+ value: 0.8552667517015687
146
+ name: Spearman Manhattan
147
+ - type: pearson_euclidean
148
+ value: 0.8526934293405145
149
+ name: Pearson Euclidean
150
+ - type: spearman_euclidean
151
+ value: 0.8551077930316164
152
+ name: Spearman Euclidean
153
+ - type: pearson_dot
154
+ value: 0.7943956137623474
155
+ name: Pearson Dot
156
+ - type: spearman_dot
157
+ value: 0.7963976287579885
158
+ name: Spearman Dot
159
+ - type: pearson_max
160
+ value: 0.852829777566948
161
+ name: Pearson Max
162
+ - type: spearman_max
163
+ value: 0.8575982860981437
164
+ name: Spearman Max
165
+ - task:
166
+ type: semantic-similarity
167
+ name: Semantic Similarity
168
+ dataset:
169
+ name: sts dev 128
170
+ type: sts-dev-128
171
+ metrics:
172
+ - type: pearson_cosine
173
+ value: 0.8410977354989039
174
+ name: Pearson Cosine
175
+ - type: spearman_cosine
176
+ value: 0.850480817077266
177
+ name: Spearman Cosine
178
+ - type: pearson_manhattan
179
+ value: 0.8461619224798919
180
+ name: Pearson Manhattan
181
+ - type: spearman_manhattan
182
+ value: 0.8490393633313068
183
+ name: Spearman Manhattan
184
+ - type: pearson_euclidean
185
+ value: 0.8458138708136093
186
+ name: Pearson Euclidean
187
+ - type: spearman_euclidean
188
+ value: 0.848719989437845
189
+ name: Spearman Euclidean
190
+ - type: pearson_dot
191
+ value: 0.7755878071062363
192
+ name: Pearson Dot
193
+ - type: spearman_dot
194
+ value: 0.7755629190322909
195
+ name: Spearman Dot
196
+ - type: pearson_max
197
+ value: 0.8461619224798919
198
+ name: Pearson Max
199
+ - type: spearman_max
200
+ value: 0.850480817077266
201
+ name: Spearman Max
202
+ - task:
203
+ type: semantic-similarity
204
+ name: Semantic Similarity
205
+ dataset:
206
+ name: sts dev 64
207
+ type: sts-dev-64
208
+ metrics:
209
+ - type: pearson_cosine
210
+ value: 0.8176550213032908
211
+ name: Pearson Cosine
212
+ - type: spearman_cosine
213
+ value: 0.8307913870285043
214
+ name: Spearman Cosine
215
+ - type: pearson_manhattan
216
+ value: 0.8291830276998975
217
+ name: Pearson Manhattan
218
+ - type: spearman_manhattan
219
+ value: 0.8320477651805375
220
+ name: Spearman Manhattan
221
+ - type: pearson_euclidean
222
+ value: 0.8311109004860973
223
+ name: Pearson Euclidean
224
+ - type: spearman_euclidean
225
+ value: 0.8333955109708812
226
+ name: Spearman Euclidean
227
+ - type: pearson_dot
228
+ value: 0.7153413665605783
229
+ name: Pearson Dot
230
+ - type: spearman_dot
231
+ value: 0.7181274999679498
232
+ name: Spearman Dot
233
+ - type: pearson_max
234
+ value: 0.8311109004860973
235
+ name: Pearson Max
236
+ - type: spearman_max
237
+ value: 0.8333955109708812
238
+ name: Spearman Max
239
+ - task:
240
+ type: semantic-similarity
241
+ name: Semantic Similarity
242
+ dataset:
243
+ name: sts test 768
244
+ type: sts-test-768
245
+ metrics:
246
+ - type: pearson_cosine
247
+ value: 0.8491592809545866
248
+ name: Pearson Cosine
249
+ - type: spearman_cosine
250
+ value: 0.8568871215102605
251
+ name: Spearman Cosine
252
+ - type: pearson_manhattan
253
+ value: 0.8572052385387118
254
+ name: Pearson Manhattan
255
+ - type: spearman_manhattan
256
+ value: 0.856617432589014
257
+ name: Spearman Manhattan
258
+ - type: pearson_euclidean
259
+ value: 0.8568623186549655
260
+ name: Pearson Euclidean
261
+ - type: spearman_euclidean
262
+ value: 0.8567096295439565
263
+ name: Spearman Euclidean
264
+ - type: pearson_dot
265
+ value: 0.7968828934121807
266
+ name: Pearson Dot
267
+ - type: spearman_dot
268
+ value: 0.7879173370882538
269
+ name: Spearman Dot
270
+ - type: pearson_max
271
+ value: 0.8572052385387118
272
+ name: Pearson Max
273
+ - type: spearman_max
274
+ value: 0.8568871215102605
275
+ name: Spearman Max
276
+ - task:
277
+ type: semantic-similarity
278
+ name: Semantic Similarity
279
+ dataset:
280
+ name: sts test 512
281
+ type: sts-test-512
282
+ metrics:
283
+ - type: pearson_cosine
284
+ value: 0.8507070298067174
285
+ name: Pearson Cosine
286
+ - type: spearman_cosine
287
+ value: 0.8575370129160172
288
+ name: Spearman Cosine
289
+ - type: pearson_manhattan
290
+ value: 0.8564033014649287
291
+ name: Pearson Manhattan
292
+ - type: spearman_manhattan
293
+ value: 0.8560352984315738
294
+ name: Spearman Manhattan
295
+ - type: pearson_euclidean
296
+ value: 0.8561906595447021
297
+ name: Pearson Euclidean
298
+ - type: spearman_euclidean
299
+ value: 0.8560701630452845
300
+ name: Spearman Euclidean
301
+ - type: pearson_dot
302
+ value: 0.7973312469719326
303
+ name: Pearson Dot
304
+ - type: spearman_dot
305
+ value: 0.7873345752731498
306
+ name: Spearman Dot
307
+ - type: pearson_max
308
+ value: 0.8564033014649287
309
+ name: Pearson Max
310
+ - type: spearman_max
311
+ value: 0.8575370129160172
312
+ name: Spearman Max
313
+ - task:
314
+ type: semantic-similarity
315
+ name: Semantic Similarity
316
+ dataset:
317
+ name: sts test 256
318
+ type: sts-test-256
319
+ metrics:
320
+ - type: pearson_cosine
321
+ value: 0.8467375811334358
322
+ name: Pearson Cosine
323
+ - type: spearman_cosine
324
+ value: 0.8523459221020806
325
+ name: Spearman Cosine
326
+ - type: pearson_manhattan
327
+ value: 0.8515524299355154
328
+ name: Pearson Manhattan
329
+ - type: spearman_manhattan
330
+ value: 0.8516309696270962
331
+ name: Spearman Manhattan
332
+ - type: pearson_euclidean
333
+ value: 0.8505975029491393
334
+ name: Pearson Euclidean
335
+ - type: spearman_euclidean
336
+ value: 0.8504082169041302
337
+ name: Spearman Euclidean
338
+ - type: pearson_dot
339
+ value: 0.7756647219222156
340
+ name: Pearson Dot
341
+ - type: spearman_dot
342
+ value: 0.7687165011432322
343
+ name: Spearman Dot
344
+ - type: pearson_max
345
+ value: 0.8515524299355154
346
+ name: Pearson Max
347
+ - type: spearman_max
348
+ value: 0.8523459221020806
349
+ name: Spearman Max
350
+ - task:
351
+ type: semantic-similarity
352
+ name: Semantic Similarity
353
+ dataset:
354
+ name: sts test 128
355
+ type: sts-test-128
356
+ metrics:
357
+ - type: pearson_cosine
358
+ value: 0.8377317518267889
359
+ name: Pearson Cosine
360
+ - type: spearman_cosine
361
+ value: 0.84715184876888
362
+ name: Spearman Cosine
363
+ - type: pearson_manhattan
364
+ value: 0.846568244977152
365
+ name: Pearson Manhattan
366
+ - type: spearman_manhattan
367
+ value: 0.8487991796570058
368
+ name: Spearman Manhattan
369
+ - type: pearson_euclidean
370
+ value: 0.8456229087328332
371
+ name: Pearson Euclidean
372
+ - type: spearman_euclidean
373
+ value: 0.847227591472
374
+ name: Spearman Euclidean
375
+ - type: pearson_dot
376
+ value: 0.7502527212449147
377
+ name: Pearson Dot
378
+ - type: spearman_dot
379
+ value: 0.7415962106597614
380
+ name: Spearman Dot
381
+ - type: pearson_max
382
+ value: 0.846568244977152
383
+ name: Pearson Max
384
+ - type: spearman_max
385
+ value: 0.8487991796570058
386
+ name: Spearman Max
387
+ - task:
388
+ type: semantic-similarity
389
+ name: Semantic Similarity
390
+ dataset:
391
+ name: sts test 64
392
+ type: sts-test-64
393
+ metrics:
394
+ - type: pearson_cosine
395
+ value: 0.8173604263806156
396
+ name: Pearson Cosine
397
+ - type: spearman_cosine
398
+ value: 0.8315612974155435
399
+ name: Spearman Cosine
400
+ - type: pearson_manhattan
401
+ value: 0.8319781289166863
402
+ name: Pearson Manhattan
403
+ - type: spearman_manhattan
404
+ value: 0.8347311175148256
405
+ name: Spearman Manhattan
406
+ - type: pearson_euclidean
407
+ value: 0.8334921243463637
408
+ name: Pearson Euclidean
409
+ - type: spearman_euclidean
410
+ value: 0.8350960592133633
411
+ name: Spearman Euclidean
412
+ - type: pearson_dot
413
+ value: 0.6935445265890855
414
+ name: Pearson Dot
415
+ - type: spearman_dot
416
+ value: 0.6843746062699552
417
+ name: Spearman Dot
418
+ - type: pearson_max
419
+ value: 0.8334921243463637
420
+ name: Pearson Max
421
+ - type: spearman_max
422
+ value: 0.8350960592133633
423
+ name: Spearman Max
424
+ ---
425
+
426
+ # SentenceTransformer based on l3cube-pune/indic-sentence-similarity-sbert
427
+
428
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [l3cube-pune/indic-sentence-similarity-sbert](https://huggingface.co/l3cube-pune/indic-sentence-similarity-sbert) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
429
+
430
+ ## Model Details
431
+
432
+ ### Model Description
433
+ - **Model Type:** Sentence Transformer
434
+ - **Base model:** [l3cube-pune/indic-sentence-similarity-sbert](https://huggingface.co/l3cube-pune/indic-sentence-similarity-sbert) <!-- at revision b07ef91a96390f3e35ce94ddb42340861519bf07 -->
435
+ - **Maximum Sequence Length:** 512 tokens
436
+ - **Output Dimensionality:** 768 tokens
437
+ - **Similarity Function:** Cosine Similarity
438
+ - **Training Dataset:**
439
+ - [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
440
+ - **Language:** en
441
+ <!-- - **License:** Unknown -->
442
+
443
+ ### Model Sources
444
+
445
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
446
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
447
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
448
+
449
+ ### Full Model Architecture
450
+
451
+ ```
452
+ SentenceTransformer(
453
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
454
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
455
+ )
456
+ ```
457
+
458
+ ## Usage
459
+
460
+ ### Direct Usage (Sentence Transformers)
461
+
462
+ First install the Sentence Transformers library:
463
+
464
+ ```bash
465
+ pip install -U sentence-transformers
466
+ ```
467
+
468
+ Then you can load this model and run inference.
469
+ ```python
470
+ from sentence_transformers import SentenceTransformer
471
+
472
+ # Download from the 🤗 Hub
473
+ model = SentenceTransformer("ammumadhu/indic-bert-nli-matryoshka")
474
+ # Run inference
475
+ sentences = [
476
+ 'Then he ran.',
477
+ 'He then started to run.',
478
+ 'A man plays the flute.',
479
+ ]
480
+ embeddings = model.encode(sentences)
481
+ print(embeddings.shape)
482
+ # [3, 768]
483
+
484
+ # Get the similarity scores for the embeddings
485
+ similarities = model.similarity(embeddings, embeddings)
486
+ print(similarities.shape)
487
+ # [3, 3]
488
+ ```
489
+
490
+ <!--
491
+ ### Direct Usage (Transformers)
492
+
493
+ <details><summary>Click to see the direct usage in Transformers</summary>
494
+
495
+ </details>
496
+ -->
497
+
498
+ <!--
499
+ ### Downstream Usage (Sentence Transformers)
500
+
501
+ You can finetune this model on your own dataset.
502
+
503
+ <details><summary>Click to expand</summary>
504
+
505
+ </details>
506
+ -->
507
+
508
+ <!--
509
+ ### Out-of-Scope Use
510
+
511
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
512
+ -->
513
+
514
+ ## Evaluation
515
+
516
+ ### Metrics
517
+
518
+ #### Semantic Similarity
519
+ * Dataset: `sts-dev-768`
520
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
521
+
522
+ | Metric | Value |
523
+ |:--------------------|:-----------|
524
+ | pearson_cosine | 0.8609 |
525
+ | **spearman_cosine** | **0.8663** |
526
+ | pearson_manhattan | 0.8587 |
527
+ | spearman_manhattan | 0.8612 |
528
+ | pearson_euclidean | 0.8585 |
529
+ | spearman_euclidean | 0.8611 |
530
+ | pearson_dot | 0.8259 |
531
+ | spearman_dot | 0.826 |
532
+ | pearson_max | 0.8609 |
533
+ | spearman_max | 0.8663 |
534
+
535
+ #### Semantic Similarity
536
+ * Dataset: `sts-dev-512`
537
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
538
+
539
+ | Metric | Value |
540
+ |:--------------------|:-----------|
541
+ | pearson_cosine | 0.8594 |
542
+ | **spearman_cosine** | **0.8649** |
543
+ | pearson_manhattan | 0.8574 |
544
+ | spearman_manhattan | 0.8599 |
545
+ | pearson_euclidean | 0.8575 |
546
+ | spearman_euclidean | 0.8601 |
547
+ | pearson_dot | 0.8223 |
548
+ | spearman_dot | 0.8227 |
549
+ | pearson_max | 0.8594 |
550
+ | spearman_max | 0.8649 |
551
+
552
+ #### Semantic Similarity
553
+ * Dataset: `sts-dev-256`
554
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
555
+
556
+ | Metric | Value |
557
+ |:--------------------|:-----------|
558
+ | pearson_cosine | 0.8506 |
559
+ | **spearman_cosine** | **0.8576** |
560
+ | pearson_manhattan | 0.8528 |
561
+ | spearman_manhattan | 0.8553 |
562
+ | pearson_euclidean | 0.8527 |
563
+ | spearman_euclidean | 0.8551 |
564
+ | pearson_dot | 0.7944 |
565
+ | spearman_dot | 0.7964 |
566
+ | pearson_max | 0.8528 |
567
+ | spearman_max | 0.8576 |
568
+
569
+ #### Semantic Similarity
570
+ * Dataset: `sts-dev-128`
571
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
572
+
573
+ | Metric | Value |
574
+ |:--------------------|:-----------|
575
+ | pearson_cosine | 0.8411 |
576
+ | **spearman_cosine** | **0.8505** |
577
+ | pearson_manhattan | 0.8462 |
578
+ | spearman_manhattan | 0.849 |
579
+ | pearson_euclidean | 0.8458 |
580
+ | spearman_euclidean | 0.8487 |
581
+ | pearson_dot | 0.7756 |
582
+ | spearman_dot | 0.7756 |
583
+ | pearson_max | 0.8462 |
584
+ | spearman_max | 0.8505 |
585
+
586
+ #### Semantic Similarity
587
+ * Dataset: `sts-dev-64`
588
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
589
+
590
+ | Metric | Value |
591
+ |:--------------------|:-----------|
592
+ | pearson_cosine | 0.8177 |
593
+ | **spearman_cosine** | **0.8308** |
594
+ | pearson_manhattan | 0.8292 |
595
+ | spearman_manhattan | 0.832 |
596
+ | pearson_euclidean | 0.8311 |
597
+ | spearman_euclidean | 0.8334 |
598
+ | pearson_dot | 0.7153 |
599
+ | spearman_dot | 0.7181 |
600
+ | pearson_max | 0.8311 |
601
+ | spearman_max | 0.8334 |
602
+
603
+ #### Semantic Similarity
604
+ * Dataset: `sts-test-768`
605
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
606
+
607
+ | Metric | Value |
608
+ |:--------------------|:-----------|
609
+ | pearson_cosine | 0.8492 |
610
+ | **spearman_cosine** | **0.8569** |
611
+ | pearson_manhattan | 0.8572 |
612
+ | spearman_manhattan | 0.8566 |
613
+ | pearson_euclidean | 0.8569 |
614
+ | spearman_euclidean | 0.8567 |
615
+ | pearson_dot | 0.7969 |
616
+ | spearman_dot | 0.7879 |
617
+ | pearson_max | 0.8572 |
618
+ | spearman_max | 0.8569 |
619
+
620
+ #### Semantic Similarity
621
+ * Dataset: `sts-test-512`
622
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
623
+
624
+ | Metric | Value |
625
+ |:--------------------|:-----------|
626
+ | pearson_cosine | 0.8507 |
627
+ | **spearman_cosine** | **0.8575** |
628
+ | pearson_manhattan | 0.8564 |
629
+ | spearman_manhattan | 0.856 |
630
+ | pearson_euclidean | 0.8562 |
631
+ | spearman_euclidean | 0.8561 |
632
+ | pearson_dot | 0.7973 |
633
+ | spearman_dot | 0.7873 |
634
+ | pearson_max | 0.8564 |
635
+ | spearman_max | 0.8575 |
636
+
637
+ #### Semantic Similarity
638
+ * Dataset: `sts-test-256`
639
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
640
+
641
+ | Metric | Value |
642
+ |:--------------------|:-----------|
643
+ | pearson_cosine | 0.8467 |
644
+ | **spearman_cosine** | **0.8523** |
645
+ | pearson_manhattan | 0.8516 |
646
+ | spearman_manhattan | 0.8516 |
647
+ | pearson_euclidean | 0.8506 |
648
+ | spearman_euclidean | 0.8504 |
649
+ | pearson_dot | 0.7757 |
650
+ | spearman_dot | 0.7687 |
651
+ | pearson_max | 0.8516 |
652
+ | spearman_max | 0.8523 |
653
+
654
+ #### Semantic Similarity
655
+ * Dataset: `sts-test-128`
656
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
657
+
658
+ | Metric | Value |
659
+ |:--------------------|:-----------|
660
+ | pearson_cosine | 0.8377 |
661
+ | **spearman_cosine** | **0.8472** |
662
+ | pearson_manhattan | 0.8466 |
663
+ | spearman_manhattan | 0.8488 |
664
+ | pearson_euclidean | 0.8456 |
665
+ | spearman_euclidean | 0.8472 |
666
+ | pearson_dot | 0.7503 |
667
+ | spearman_dot | 0.7416 |
668
+ | pearson_max | 0.8466 |
669
+ | spearman_max | 0.8488 |
670
+
671
+ #### Semantic Similarity
672
+ * Dataset: `sts-test-64`
673
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
674
+
675
+ | Metric | Value |
676
+ |:--------------------|:-----------|
677
+ | pearson_cosine | 0.8174 |
678
+ | **spearman_cosine** | **0.8316** |
679
+ | pearson_manhattan | 0.832 |
680
+ | spearman_manhattan | 0.8347 |
681
+ | pearson_euclidean | 0.8335 |
682
+ | spearman_euclidean | 0.8351 |
683
+ | pearson_dot | 0.6935 |
684
+ | spearman_dot | 0.6844 |
685
+ | pearson_max | 0.8335 |
686
+ | spearman_max | 0.8351 |
687
+
688
+ <!--
689
+ ## Bias, Risks and Limitations
690
+
691
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
692
+ -->
693
+
694
+ <!--
695
+ ### Recommendations
696
+
697
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
698
+ -->
699
+
700
+ ## Training Details
701
+
702
+ ### Training Dataset
703
+
704
+ #### sentence-transformers/all-nli
705
+
706
+ * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
707
+ * Size: 10,000 training samples
708
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
709
+ * Approximate statistics based on the first 1000 samples:
710
+ | | anchor | positive | negative |
711
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
712
+ | type | string | string | string |
713
+ | details | <ul><li>min: 4 tokens</li><li>mean: 18.8 tokens</li><li>max: 89 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.84 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 12.39 tokens</li><li>max: 38 tokens</li></ul> |
714
+ * Samples:
715
+ | anchor | positive | negative |
716
+ |:----------------------------------------------------------------------------------------------------------|:--------------------------------------------------|:-------------------------------------------------------|
717
+ | <code>Side view of a female triathlete during the run.</code> | <code>A woman runs</code> | <code>A man sits</code> |
718
+ | <code>Confused person standing in the middle of the trolley tracks trying to figure out the signs.</code> | <code>A person is on the tracks.</code> | <code>A man sits in an airplane.</code> |
719
+ | <code>A woman in a black shirt, jean shorts and white tennis shoes is bowling.</code> | <code>A woman is bowling in casual clothes</code> | <code>A woman bowling wins an outfit of clothes</code> |
720
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
721
+ ```json
722
+ {
723
+ "loss": "MultipleNegativesRankingLoss",
724
+ "matryoshka_dims": [
725
+ 768,
726
+ 512,
727
+ 256,
728
+ 128,
729
+ 64
730
+ ],
731
+ "matryoshka_weights": [
732
+ 1,
733
+ 1,
734
+ 1,
735
+ 1,
736
+ 1
737
+ ],
738
+ "n_dims_per_step": -1
739
+ }
740
+ ```
741
+
742
+ ### Evaluation Dataset
743
+
744
+ #### sentence-transformers/all-nli
745
+
746
+ * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
747
+ * Size: 6,584 evaluation samples
748
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
749
+ * Approximate statistics based on the first 1000 samples:
750
+ | | anchor | positive | negative |
751
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
752
+ | type | string | string | string |
753
+ | details | <ul><li>min: 6 tokens</li><li>mean: 18.54 tokens</li><li>max: 74 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.97 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.59 tokens</li><li>max: 29 tokens</li></ul> |
754
+ * Samples:
755
+ | anchor | positive | negative |
756
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
757
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
758
+ | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
759
+ | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
760
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
761
+ ```json
762
+ {
763
+ "loss": "MultipleNegativesRankingLoss",
764
+ "matryoshka_dims": [
765
+ 768,
766
+ 512,
767
+ 256,
768
+ 128,
769
+ 64
770
+ ],
771
+ "matryoshka_weights": [
772
+ 1,
773
+ 1,
774
+ 1,
775
+ 1,
776
+ 1
777
+ ],
778
+ "n_dims_per_step": -1
779
+ }
780
+ ```
781
+
782
+ ### Training Hyperparameters
783
+ #### Non-Default Hyperparameters
784
+
785
+ - `eval_strategy`: steps
786
+ - `per_device_train_batch_size`: 128
787
+ - `per_device_eval_batch_size`: 128
788
+ - `num_train_epochs`: 1
789
+ - `warmup_ratio`: 0.1
790
+ - `fp16`: True
791
+ - `batch_sampler`: no_duplicates
792
+
793
+ #### All Hyperparameters
794
+ <details><summary>Click to expand</summary>
795
+
796
+ - `overwrite_output_dir`: False
797
+ - `do_predict`: False
798
+ - `eval_strategy`: steps
799
+ - `prediction_loss_only`: True
800
+ - `per_device_train_batch_size`: 128
801
+ - `per_device_eval_batch_size`: 128
802
+ - `per_gpu_train_batch_size`: None
803
+ - `per_gpu_eval_batch_size`: None
804
+ - `gradient_accumulation_steps`: 1
805
+ - `eval_accumulation_steps`: None
806
+ - `learning_rate`: 5e-05
807
+ - `weight_decay`: 0.0
808
+ - `adam_beta1`: 0.9
809
+ - `adam_beta2`: 0.999
810
+ - `adam_epsilon`: 1e-08
811
+ - `max_grad_norm`: 1.0
812
+ - `num_train_epochs`: 1
813
+ - `max_steps`: -1
814
+ - `lr_scheduler_type`: linear
815
+ - `lr_scheduler_kwargs`: {}
816
+ - `warmup_ratio`: 0.1
817
+ - `warmup_steps`: 0
818
+ - `log_level`: passive
819
+ - `log_level_replica`: warning
820
+ - `log_on_each_node`: True
821
+ - `logging_nan_inf_filter`: True
822
+ - `save_safetensors`: True
823
+ - `save_on_each_node`: False
824
+ - `save_only_model`: False
825
+ - `restore_callback_states_from_checkpoint`: False
826
+ - `no_cuda`: False
827
+ - `use_cpu`: False
828
+ - `use_mps_device`: False
829
+ - `seed`: 42
830
+ - `data_seed`: None
831
+ - `jit_mode_eval`: False
832
+ - `use_ipex`: False
833
+ - `bf16`: False
834
+ - `fp16`: True
835
+ - `fp16_opt_level`: O1
836
+ - `half_precision_backend`: auto
837
+ - `bf16_full_eval`: False
838
+ - `fp16_full_eval`: False
839
+ - `tf32`: None
840
+ - `local_rank`: 0
841
+ - `ddp_backend`: None
842
+ - `tpu_num_cores`: None
843
+ - `tpu_metrics_debug`: False
844
+ - `debug`: []
845
+ - `dataloader_drop_last`: False
846
+ - `dataloader_num_workers`: 0
847
+ - `dataloader_prefetch_factor`: None
848
+ - `past_index`: -1
849
+ - `disable_tqdm`: False
850
+ - `remove_unused_columns`: True
851
+ - `label_names`: None
852
+ - `load_best_model_at_end`: False
853
+ - `ignore_data_skip`: False
854
+ - `fsdp`: []
855
+ - `fsdp_min_num_params`: 0
856
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
857
+ - `fsdp_transformer_layer_cls_to_wrap`: None
858
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
859
+ - `deepspeed`: None
860
+ - `label_smoothing_factor`: 0.0
861
+ - `optim`: adamw_torch
862
+ - `optim_args`: None
863
+ - `adafactor`: False
864
+ - `group_by_length`: False
865
+ - `length_column_name`: length
866
+ - `ddp_find_unused_parameters`: None
867
+ - `ddp_bucket_cap_mb`: None
868
+ - `ddp_broadcast_buffers`: False
869
+ - `dataloader_pin_memory`: True
870
+ - `dataloader_persistent_workers`: False
871
+ - `skip_memory_metrics`: True
872
+ - `use_legacy_prediction_loop`: False
873
+ - `push_to_hub`: False
874
+ - `resume_from_checkpoint`: None
875
+ - `hub_model_id`: None
876
+ - `hub_strategy`: every_save
877
+ - `hub_private_repo`: False
878
+ - `hub_always_push`: False
879
+ - `gradient_checkpointing`: False
880
+ - `gradient_checkpointing_kwargs`: None
881
+ - `include_inputs_for_metrics`: False
882
+ - `eval_do_concat_batches`: True
883
+ - `fp16_backend`: auto
884
+ - `push_to_hub_model_id`: None
885
+ - `push_to_hub_organization`: None
886
+ - `mp_parameters`:
887
+ - `auto_find_batch_size`: False
888
+ - `full_determinism`: False
889
+ - `torchdynamo`: None
890
+ - `ray_scope`: last
891
+ - `ddp_timeout`: 1800
892
+ - `torch_compile`: False
893
+ - `torch_compile_backend`: None
894
+ - `torch_compile_mode`: None
895
+ - `dispatch_batches`: None
896
+ - `split_batches`: None
897
+ - `include_tokens_per_second`: False
898
+ - `include_num_input_tokens_seen`: False
899
+ - `neftune_noise_alpha`: None
900
+ - `optim_target_modules`: None
901
+ - `batch_eval_metrics`: False
902
+ - `batch_sampler`: no_duplicates
903
+ - `multi_dataset_batch_sampler`: proportional
904
+
905
+ </details>
906
+
907
+ ### Training Logs
908
+ | Epoch | Step | Training Loss | loss | sts-dev-128_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine |
909
+ |:------:|:----:|:-------------:|:------:|:---------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|
910
+ | 0.3797 | 30 | 7.9432 | 4.2806 | 0.8509 | 0.8570 | 0.8633 | 0.8311 | 0.8644 | - | - | - | - | - |
911
+ | 0.7595 | 60 | 6.1701 | 3.9498 | 0.8505 | 0.8576 | 0.8649 | 0.8308 | 0.8663 | - | - | - | - | - |
912
+ | 1.0 | 79 | - | - | - | - | - | - | - | 0.8472 | 0.8523 | 0.8575 | 0.8316 | 0.8569 |
913
+
914
+
915
+ ### Framework Versions
916
+ - Python: 3.10.12
917
+ - Sentence Transformers: 3.0.0
918
+ - Transformers: 4.41.1
919
+ - PyTorch: 2.3.0+cu121
920
+ - Accelerate: 0.30.1
921
+ - Datasets: 2.19.2
922
+ - Tokenizers: 0.19.1
923
+
924
+ ## Citation
925
+
926
+ ### BibTeX
927
+
928
+ #### Sentence Transformers
929
+ ```bibtex
930
+ @inproceedings{reimers-2019-sentence-bert,
931
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
932
+ author = "Reimers, Nils and Gurevych, Iryna",
933
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
934
+ month = "11",
935
+ year = "2019",
936
+ publisher = "Association for Computational Linguistics",
937
+ url = "https://arxiv.org/abs/1908.10084",
938
+ }
939
+ ```
940
+
941
+ #### MatryoshkaLoss
942
+ ```bibtex
943
+ @misc{kusupati2024matryoshka,
944
+ title={Matryoshka Representation Learning},
945
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
946
+ year={2024},
947
+ eprint={2205.13147},
948
+ archivePrefix={arXiv},
949
+ primaryClass={cs.LG}
950
+ }
951
+ ```
952
+
953
+ #### MultipleNegativesRankingLoss
954
+ ```bibtex
955
+ @misc{henderson2017efficient,
956
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
957
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
958
+ year={2017},
959
+ eprint={1705.00652},
960
+ archivePrefix={arXiv},
961
+ primaryClass={cs.CL}
962
+ }
963
+ ```
964
+
965
+ <!--
966
+ ## Glossary
967
+
968
+ *Clearly define terms in order to be accessible across audiences.*
969
+ -->
970
+
971
+ <!--
972
+ ## Model Card Authors
973
+
974
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
975
+ -->
976
+
977
+ <!--
978
+ ## Model Card Contact
979
+
980
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
981
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "l3cube-pune/indic-sentence-similarity-sbert",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "embedding_size": 768,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.1",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 197285
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.26.1",
5
+ "pytorch": "1.13.1+cu116"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7b82af46f5399f2103276c545b9b2cdcd1249f4b411f9d2ec45221df28bd93b
3
+ size 950247272
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "103": {
20
+ "content": "[MASK]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[CLS]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "105": {
36
+ "content": "[SEP]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "lowercase": false,
49
+ "mask_token": "[MASK]",
50
+ "max_length": 512,
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": false,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff