Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +981 -0
- config.json +26 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +65 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,981 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
library_name: sentence-transformers
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- sentence-similarity
|
8 |
+
- feature-extraction
|
9 |
+
- dataset_size:10K<n<100K
|
10 |
+
- loss:MatryoshkaLoss
|
11 |
+
- loss:MultipleNegativesRankingLoss
|
12 |
+
base_model: l3cube-pune/indic-sentence-similarity-sbert
|
13 |
+
metrics:
|
14 |
+
- pearson_cosine
|
15 |
+
- spearman_cosine
|
16 |
+
- pearson_manhattan
|
17 |
+
- spearman_manhattan
|
18 |
+
- pearson_euclidean
|
19 |
+
- spearman_euclidean
|
20 |
+
- pearson_dot
|
21 |
+
- spearman_dot
|
22 |
+
- pearson_max
|
23 |
+
- spearman_max
|
24 |
+
widget:
|
25 |
+
- source_sentence: Excuse me.
|
26 |
+
sentences:
|
27 |
+
- um pardon me
|
28 |
+
- A man is opening mail.
|
29 |
+
- The girls are indoors.
|
30 |
+
- source_sentence: Double pig.
|
31 |
+
sentences:
|
32 |
+
- Ah, triple pig!
|
33 |
+
- a girl poses for camera
|
34 |
+
- Girls dance together.
|
35 |
+
- source_sentence: People pose.
|
36 |
+
sentences:
|
37 |
+
- People are smiling.
|
38 |
+
- I know a few old ones.
|
39 |
+
- The boy fell off his bike.
|
40 |
+
- source_sentence: A man sings.
|
41 |
+
sentences:
|
42 |
+
- People singing
|
43 |
+
- A man is playing golf.
|
44 |
+
- The women are eating bread.
|
45 |
+
- source_sentence: Then he ran.
|
46 |
+
sentences:
|
47 |
+
- He then started to run.
|
48 |
+
- A man plays the flute.
|
49 |
+
- A couple sit on the couch
|
50 |
+
pipeline_tag: sentence-similarity
|
51 |
+
model-index:
|
52 |
+
- name: SentenceTransformer based on l3cube-pune/indic-sentence-similarity-sbert
|
53 |
+
results:
|
54 |
+
- task:
|
55 |
+
type: semantic-similarity
|
56 |
+
name: Semantic Similarity
|
57 |
+
dataset:
|
58 |
+
name: sts dev 768
|
59 |
+
type: sts-dev-768
|
60 |
+
metrics:
|
61 |
+
- type: pearson_cosine
|
62 |
+
value: 0.8608857207512975
|
63 |
+
name: Pearson Cosine
|
64 |
+
- type: spearman_cosine
|
65 |
+
value: 0.8662860178080238
|
66 |
+
name: Spearman Cosine
|
67 |
+
- type: pearson_manhattan
|
68 |
+
value: 0.858692209351004
|
69 |
+
name: Pearson Manhattan
|
70 |
+
- type: spearman_manhattan
|
71 |
+
value: 0.8612472945208892
|
72 |
+
name: Spearman Manhattan
|
73 |
+
- type: pearson_euclidean
|
74 |
+
value: 0.858472048314985
|
75 |
+
name: Pearson Euclidean
|
76 |
+
- type: spearman_euclidean
|
77 |
+
value: 0.8611276457994067
|
78 |
+
name: Spearman Euclidean
|
79 |
+
- type: pearson_dot
|
80 |
+
value: 0.8258747949887901
|
81 |
+
name: Pearson Dot
|
82 |
+
- type: spearman_dot
|
83 |
+
value: 0.8259736371824636
|
84 |
+
name: Spearman Dot
|
85 |
+
- type: pearson_max
|
86 |
+
value: 0.8608857207512975
|
87 |
+
name: Pearson Max
|
88 |
+
- type: spearman_max
|
89 |
+
value: 0.8662860178080238
|
90 |
+
name: Spearman Max
|
91 |
+
- task:
|
92 |
+
type: semantic-similarity
|
93 |
+
name: Semantic Similarity
|
94 |
+
dataset:
|
95 |
+
name: sts dev 512
|
96 |
+
type: sts-dev-512
|
97 |
+
metrics:
|
98 |
+
- type: pearson_cosine
|
99 |
+
value: 0.8594405198312016
|
100 |
+
name: Pearson Cosine
|
101 |
+
- type: spearman_cosine
|
102 |
+
value: 0.8648571300070264
|
103 |
+
name: Spearman Cosine
|
104 |
+
- type: pearson_manhattan
|
105 |
+
value: 0.8574291650964095
|
106 |
+
name: Pearson Manhattan
|
107 |
+
- type: spearman_manhattan
|
108 |
+
value: 0.8598780673781499
|
109 |
+
name: Spearman Manhattan
|
110 |
+
- type: pearson_euclidean
|
111 |
+
value: 0.8574540367546871
|
112 |
+
name: Pearson Euclidean
|
113 |
+
- type: spearman_euclidean
|
114 |
+
value: 0.8600722932569861
|
115 |
+
name: Spearman Euclidean
|
116 |
+
- type: pearson_dot
|
117 |
+
value: 0.822340474813523
|
118 |
+
name: Pearson Dot
|
119 |
+
- type: spearman_dot
|
120 |
+
value: 0.8226609928783558
|
121 |
+
name: Spearman Dot
|
122 |
+
- type: pearson_max
|
123 |
+
value: 0.8594405198312016
|
124 |
+
name: Pearson Max
|
125 |
+
- type: spearman_max
|
126 |
+
value: 0.8648571300070264
|
127 |
+
name: Spearman Max
|
128 |
+
- task:
|
129 |
+
type: semantic-similarity
|
130 |
+
name: Semantic Similarity
|
131 |
+
dataset:
|
132 |
+
name: sts dev 256
|
133 |
+
type: sts-dev-256
|
134 |
+
metrics:
|
135 |
+
- type: pearson_cosine
|
136 |
+
value: 0.8506120561071212
|
137 |
+
name: Pearson Cosine
|
138 |
+
- type: spearman_cosine
|
139 |
+
value: 0.8575982860981437
|
140 |
+
name: Spearman Cosine
|
141 |
+
- type: pearson_manhattan
|
142 |
+
value: 0.852829777566948
|
143 |
+
name: Pearson Manhattan
|
144 |
+
- type: spearman_manhattan
|
145 |
+
value: 0.8552667517015687
|
146 |
+
name: Spearman Manhattan
|
147 |
+
- type: pearson_euclidean
|
148 |
+
value: 0.8526934293405145
|
149 |
+
name: Pearson Euclidean
|
150 |
+
- type: spearman_euclidean
|
151 |
+
value: 0.8551077930316164
|
152 |
+
name: Spearman Euclidean
|
153 |
+
- type: pearson_dot
|
154 |
+
value: 0.7943956137623474
|
155 |
+
name: Pearson Dot
|
156 |
+
- type: spearman_dot
|
157 |
+
value: 0.7963976287579885
|
158 |
+
name: Spearman Dot
|
159 |
+
- type: pearson_max
|
160 |
+
value: 0.852829777566948
|
161 |
+
name: Pearson Max
|
162 |
+
- type: spearman_max
|
163 |
+
value: 0.8575982860981437
|
164 |
+
name: Spearman Max
|
165 |
+
- task:
|
166 |
+
type: semantic-similarity
|
167 |
+
name: Semantic Similarity
|
168 |
+
dataset:
|
169 |
+
name: sts dev 128
|
170 |
+
type: sts-dev-128
|
171 |
+
metrics:
|
172 |
+
- type: pearson_cosine
|
173 |
+
value: 0.8410977354989039
|
174 |
+
name: Pearson Cosine
|
175 |
+
- type: spearman_cosine
|
176 |
+
value: 0.850480817077266
|
177 |
+
name: Spearman Cosine
|
178 |
+
- type: pearson_manhattan
|
179 |
+
value: 0.8461619224798919
|
180 |
+
name: Pearson Manhattan
|
181 |
+
- type: spearman_manhattan
|
182 |
+
value: 0.8490393633313068
|
183 |
+
name: Spearman Manhattan
|
184 |
+
- type: pearson_euclidean
|
185 |
+
value: 0.8458138708136093
|
186 |
+
name: Pearson Euclidean
|
187 |
+
- type: spearman_euclidean
|
188 |
+
value: 0.848719989437845
|
189 |
+
name: Spearman Euclidean
|
190 |
+
- type: pearson_dot
|
191 |
+
value: 0.7755878071062363
|
192 |
+
name: Pearson Dot
|
193 |
+
- type: spearman_dot
|
194 |
+
value: 0.7755629190322909
|
195 |
+
name: Spearman Dot
|
196 |
+
- type: pearson_max
|
197 |
+
value: 0.8461619224798919
|
198 |
+
name: Pearson Max
|
199 |
+
- type: spearman_max
|
200 |
+
value: 0.850480817077266
|
201 |
+
name: Spearman Max
|
202 |
+
- task:
|
203 |
+
type: semantic-similarity
|
204 |
+
name: Semantic Similarity
|
205 |
+
dataset:
|
206 |
+
name: sts dev 64
|
207 |
+
type: sts-dev-64
|
208 |
+
metrics:
|
209 |
+
- type: pearson_cosine
|
210 |
+
value: 0.8176550213032908
|
211 |
+
name: Pearson Cosine
|
212 |
+
- type: spearman_cosine
|
213 |
+
value: 0.8307913870285043
|
214 |
+
name: Spearman Cosine
|
215 |
+
- type: pearson_manhattan
|
216 |
+
value: 0.8291830276998975
|
217 |
+
name: Pearson Manhattan
|
218 |
+
- type: spearman_manhattan
|
219 |
+
value: 0.8320477651805375
|
220 |
+
name: Spearman Manhattan
|
221 |
+
- type: pearson_euclidean
|
222 |
+
value: 0.8311109004860973
|
223 |
+
name: Pearson Euclidean
|
224 |
+
- type: spearman_euclidean
|
225 |
+
value: 0.8333955109708812
|
226 |
+
name: Spearman Euclidean
|
227 |
+
- type: pearson_dot
|
228 |
+
value: 0.7153413665605783
|
229 |
+
name: Pearson Dot
|
230 |
+
- type: spearman_dot
|
231 |
+
value: 0.7181274999679498
|
232 |
+
name: Spearman Dot
|
233 |
+
- type: pearson_max
|
234 |
+
value: 0.8311109004860973
|
235 |
+
name: Pearson Max
|
236 |
+
- type: spearman_max
|
237 |
+
value: 0.8333955109708812
|
238 |
+
name: Spearman Max
|
239 |
+
- task:
|
240 |
+
type: semantic-similarity
|
241 |
+
name: Semantic Similarity
|
242 |
+
dataset:
|
243 |
+
name: sts test 768
|
244 |
+
type: sts-test-768
|
245 |
+
metrics:
|
246 |
+
- type: pearson_cosine
|
247 |
+
value: 0.8491592809545866
|
248 |
+
name: Pearson Cosine
|
249 |
+
- type: spearman_cosine
|
250 |
+
value: 0.8568871215102605
|
251 |
+
name: Spearman Cosine
|
252 |
+
- type: pearson_manhattan
|
253 |
+
value: 0.8572052385387118
|
254 |
+
name: Pearson Manhattan
|
255 |
+
- type: spearman_manhattan
|
256 |
+
value: 0.856617432589014
|
257 |
+
name: Spearman Manhattan
|
258 |
+
- type: pearson_euclidean
|
259 |
+
value: 0.8568623186549655
|
260 |
+
name: Pearson Euclidean
|
261 |
+
- type: spearman_euclidean
|
262 |
+
value: 0.8567096295439565
|
263 |
+
name: Spearman Euclidean
|
264 |
+
- type: pearson_dot
|
265 |
+
value: 0.7968828934121807
|
266 |
+
name: Pearson Dot
|
267 |
+
- type: spearman_dot
|
268 |
+
value: 0.7879173370882538
|
269 |
+
name: Spearman Dot
|
270 |
+
- type: pearson_max
|
271 |
+
value: 0.8572052385387118
|
272 |
+
name: Pearson Max
|
273 |
+
- type: spearman_max
|
274 |
+
value: 0.8568871215102605
|
275 |
+
name: Spearman Max
|
276 |
+
- task:
|
277 |
+
type: semantic-similarity
|
278 |
+
name: Semantic Similarity
|
279 |
+
dataset:
|
280 |
+
name: sts test 512
|
281 |
+
type: sts-test-512
|
282 |
+
metrics:
|
283 |
+
- type: pearson_cosine
|
284 |
+
value: 0.8507070298067174
|
285 |
+
name: Pearson Cosine
|
286 |
+
- type: spearman_cosine
|
287 |
+
value: 0.8575370129160172
|
288 |
+
name: Spearman Cosine
|
289 |
+
- type: pearson_manhattan
|
290 |
+
value: 0.8564033014649287
|
291 |
+
name: Pearson Manhattan
|
292 |
+
- type: spearman_manhattan
|
293 |
+
value: 0.8560352984315738
|
294 |
+
name: Spearman Manhattan
|
295 |
+
- type: pearson_euclidean
|
296 |
+
value: 0.8561906595447021
|
297 |
+
name: Pearson Euclidean
|
298 |
+
- type: spearman_euclidean
|
299 |
+
value: 0.8560701630452845
|
300 |
+
name: Spearman Euclidean
|
301 |
+
- type: pearson_dot
|
302 |
+
value: 0.7973312469719326
|
303 |
+
name: Pearson Dot
|
304 |
+
- type: spearman_dot
|
305 |
+
value: 0.7873345752731498
|
306 |
+
name: Spearman Dot
|
307 |
+
- type: pearson_max
|
308 |
+
value: 0.8564033014649287
|
309 |
+
name: Pearson Max
|
310 |
+
- type: spearman_max
|
311 |
+
value: 0.8575370129160172
|
312 |
+
name: Spearman Max
|
313 |
+
- task:
|
314 |
+
type: semantic-similarity
|
315 |
+
name: Semantic Similarity
|
316 |
+
dataset:
|
317 |
+
name: sts test 256
|
318 |
+
type: sts-test-256
|
319 |
+
metrics:
|
320 |
+
- type: pearson_cosine
|
321 |
+
value: 0.8467375811334358
|
322 |
+
name: Pearson Cosine
|
323 |
+
- type: spearman_cosine
|
324 |
+
value: 0.8523459221020806
|
325 |
+
name: Spearman Cosine
|
326 |
+
- type: pearson_manhattan
|
327 |
+
value: 0.8515524299355154
|
328 |
+
name: Pearson Manhattan
|
329 |
+
- type: spearman_manhattan
|
330 |
+
value: 0.8516309696270962
|
331 |
+
name: Spearman Manhattan
|
332 |
+
- type: pearson_euclidean
|
333 |
+
value: 0.8505975029491393
|
334 |
+
name: Pearson Euclidean
|
335 |
+
- type: spearman_euclidean
|
336 |
+
value: 0.8504082169041302
|
337 |
+
name: Spearman Euclidean
|
338 |
+
- type: pearson_dot
|
339 |
+
value: 0.7756647219222156
|
340 |
+
name: Pearson Dot
|
341 |
+
- type: spearman_dot
|
342 |
+
value: 0.7687165011432322
|
343 |
+
name: Spearman Dot
|
344 |
+
- type: pearson_max
|
345 |
+
value: 0.8515524299355154
|
346 |
+
name: Pearson Max
|
347 |
+
- type: spearman_max
|
348 |
+
value: 0.8523459221020806
|
349 |
+
name: Spearman Max
|
350 |
+
- task:
|
351 |
+
type: semantic-similarity
|
352 |
+
name: Semantic Similarity
|
353 |
+
dataset:
|
354 |
+
name: sts test 128
|
355 |
+
type: sts-test-128
|
356 |
+
metrics:
|
357 |
+
- type: pearson_cosine
|
358 |
+
value: 0.8377317518267889
|
359 |
+
name: Pearson Cosine
|
360 |
+
- type: spearman_cosine
|
361 |
+
value: 0.84715184876888
|
362 |
+
name: Spearman Cosine
|
363 |
+
- type: pearson_manhattan
|
364 |
+
value: 0.846568244977152
|
365 |
+
name: Pearson Manhattan
|
366 |
+
- type: spearman_manhattan
|
367 |
+
value: 0.8487991796570058
|
368 |
+
name: Spearman Manhattan
|
369 |
+
- type: pearson_euclidean
|
370 |
+
value: 0.8456229087328332
|
371 |
+
name: Pearson Euclidean
|
372 |
+
- type: spearman_euclidean
|
373 |
+
value: 0.847227591472
|
374 |
+
name: Spearman Euclidean
|
375 |
+
- type: pearson_dot
|
376 |
+
value: 0.7502527212449147
|
377 |
+
name: Pearson Dot
|
378 |
+
- type: spearman_dot
|
379 |
+
value: 0.7415962106597614
|
380 |
+
name: Spearman Dot
|
381 |
+
- type: pearson_max
|
382 |
+
value: 0.846568244977152
|
383 |
+
name: Pearson Max
|
384 |
+
- type: spearman_max
|
385 |
+
value: 0.8487991796570058
|
386 |
+
name: Spearman Max
|
387 |
+
- task:
|
388 |
+
type: semantic-similarity
|
389 |
+
name: Semantic Similarity
|
390 |
+
dataset:
|
391 |
+
name: sts test 64
|
392 |
+
type: sts-test-64
|
393 |
+
metrics:
|
394 |
+
- type: pearson_cosine
|
395 |
+
value: 0.8173604263806156
|
396 |
+
name: Pearson Cosine
|
397 |
+
- type: spearman_cosine
|
398 |
+
value: 0.8315612974155435
|
399 |
+
name: Spearman Cosine
|
400 |
+
- type: pearson_manhattan
|
401 |
+
value: 0.8319781289166863
|
402 |
+
name: Pearson Manhattan
|
403 |
+
- type: spearman_manhattan
|
404 |
+
value: 0.8347311175148256
|
405 |
+
name: Spearman Manhattan
|
406 |
+
- type: pearson_euclidean
|
407 |
+
value: 0.8334921243463637
|
408 |
+
name: Pearson Euclidean
|
409 |
+
- type: spearman_euclidean
|
410 |
+
value: 0.8350960592133633
|
411 |
+
name: Spearman Euclidean
|
412 |
+
- type: pearson_dot
|
413 |
+
value: 0.6935445265890855
|
414 |
+
name: Pearson Dot
|
415 |
+
- type: spearman_dot
|
416 |
+
value: 0.6843746062699552
|
417 |
+
name: Spearman Dot
|
418 |
+
- type: pearson_max
|
419 |
+
value: 0.8334921243463637
|
420 |
+
name: Pearson Max
|
421 |
+
- type: spearman_max
|
422 |
+
value: 0.8350960592133633
|
423 |
+
name: Spearman Max
|
424 |
+
---
|
425 |
+
|
426 |
+
# SentenceTransformer based on l3cube-pune/indic-sentence-similarity-sbert
|
427 |
+
|
428 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [l3cube-pune/indic-sentence-similarity-sbert](https://huggingface.co/l3cube-pune/indic-sentence-similarity-sbert) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
429 |
+
|
430 |
+
## Model Details
|
431 |
+
|
432 |
+
### Model Description
|
433 |
+
- **Model Type:** Sentence Transformer
|
434 |
+
- **Base model:** [l3cube-pune/indic-sentence-similarity-sbert](https://huggingface.co/l3cube-pune/indic-sentence-similarity-sbert) <!-- at revision b07ef91a96390f3e35ce94ddb42340861519bf07 -->
|
435 |
+
- **Maximum Sequence Length:** 512 tokens
|
436 |
+
- **Output Dimensionality:** 768 tokens
|
437 |
+
- **Similarity Function:** Cosine Similarity
|
438 |
+
- **Training Dataset:**
|
439 |
+
- [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
|
440 |
+
- **Language:** en
|
441 |
+
<!-- - **License:** Unknown -->
|
442 |
+
|
443 |
+
### Model Sources
|
444 |
+
|
445 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
446 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
447 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
448 |
+
|
449 |
+
### Full Model Architecture
|
450 |
+
|
451 |
+
```
|
452 |
+
SentenceTransformer(
|
453 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
454 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
455 |
+
)
|
456 |
+
```
|
457 |
+
|
458 |
+
## Usage
|
459 |
+
|
460 |
+
### Direct Usage (Sentence Transformers)
|
461 |
+
|
462 |
+
First install the Sentence Transformers library:
|
463 |
+
|
464 |
+
```bash
|
465 |
+
pip install -U sentence-transformers
|
466 |
+
```
|
467 |
+
|
468 |
+
Then you can load this model and run inference.
|
469 |
+
```python
|
470 |
+
from sentence_transformers import SentenceTransformer
|
471 |
+
|
472 |
+
# Download from the 🤗 Hub
|
473 |
+
model = SentenceTransformer("ammumadhu/indic-bert-nli-matryoshka")
|
474 |
+
# Run inference
|
475 |
+
sentences = [
|
476 |
+
'Then he ran.',
|
477 |
+
'He then started to run.',
|
478 |
+
'A man plays the flute.',
|
479 |
+
]
|
480 |
+
embeddings = model.encode(sentences)
|
481 |
+
print(embeddings.shape)
|
482 |
+
# [3, 768]
|
483 |
+
|
484 |
+
# Get the similarity scores for the embeddings
|
485 |
+
similarities = model.similarity(embeddings, embeddings)
|
486 |
+
print(similarities.shape)
|
487 |
+
# [3, 3]
|
488 |
+
```
|
489 |
+
|
490 |
+
<!--
|
491 |
+
### Direct Usage (Transformers)
|
492 |
+
|
493 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
494 |
+
|
495 |
+
</details>
|
496 |
+
-->
|
497 |
+
|
498 |
+
<!--
|
499 |
+
### Downstream Usage (Sentence Transformers)
|
500 |
+
|
501 |
+
You can finetune this model on your own dataset.
|
502 |
+
|
503 |
+
<details><summary>Click to expand</summary>
|
504 |
+
|
505 |
+
</details>
|
506 |
+
-->
|
507 |
+
|
508 |
+
<!--
|
509 |
+
### Out-of-Scope Use
|
510 |
+
|
511 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
512 |
+
-->
|
513 |
+
|
514 |
+
## Evaluation
|
515 |
+
|
516 |
+
### Metrics
|
517 |
+
|
518 |
+
#### Semantic Similarity
|
519 |
+
* Dataset: `sts-dev-768`
|
520 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
521 |
+
|
522 |
+
| Metric | Value |
|
523 |
+
|:--------------------|:-----------|
|
524 |
+
| pearson_cosine | 0.8609 |
|
525 |
+
| **spearman_cosine** | **0.8663** |
|
526 |
+
| pearson_manhattan | 0.8587 |
|
527 |
+
| spearman_manhattan | 0.8612 |
|
528 |
+
| pearson_euclidean | 0.8585 |
|
529 |
+
| spearman_euclidean | 0.8611 |
|
530 |
+
| pearson_dot | 0.8259 |
|
531 |
+
| spearman_dot | 0.826 |
|
532 |
+
| pearson_max | 0.8609 |
|
533 |
+
| spearman_max | 0.8663 |
|
534 |
+
|
535 |
+
#### Semantic Similarity
|
536 |
+
* Dataset: `sts-dev-512`
|
537 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
538 |
+
|
539 |
+
| Metric | Value |
|
540 |
+
|:--------------------|:-----------|
|
541 |
+
| pearson_cosine | 0.8594 |
|
542 |
+
| **spearman_cosine** | **0.8649** |
|
543 |
+
| pearson_manhattan | 0.8574 |
|
544 |
+
| spearman_manhattan | 0.8599 |
|
545 |
+
| pearson_euclidean | 0.8575 |
|
546 |
+
| spearman_euclidean | 0.8601 |
|
547 |
+
| pearson_dot | 0.8223 |
|
548 |
+
| spearman_dot | 0.8227 |
|
549 |
+
| pearson_max | 0.8594 |
|
550 |
+
| spearman_max | 0.8649 |
|
551 |
+
|
552 |
+
#### Semantic Similarity
|
553 |
+
* Dataset: `sts-dev-256`
|
554 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
555 |
+
|
556 |
+
| Metric | Value |
|
557 |
+
|:--------------------|:-----------|
|
558 |
+
| pearson_cosine | 0.8506 |
|
559 |
+
| **spearman_cosine** | **0.8576** |
|
560 |
+
| pearson_manhattan | 0.8528 |
|
561 |
+
| spearman_manhattan | 0.8553 |
|
562 |
+
| pearson_euclidean | 0.8527 |
|
563 |
+
| spearman_euclidean | 0.8551 |
|
564 |
+
| pearson_dot | 0.7944 |
|
565 |
+
| spearman_dot | 0.7964 |
|
566 |
+
| pearson_max | 0.8528 |
|
567 |
+
| spearman_max | 0.8576 |
|
568 |
+
|
569 |
+
#### Semantic Similarity
|
570 |
+
* Dataset: `sts-dev-128`
|
571 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
572 |
+
|
573 |
+
| Metric | Value |
|
574 |
+
|:--------------------|:-----------|
|
575 |
+
| pearson_cosine | 0.8411 |
|
576 |
+
| **spearman_cosine** | **0.8505** |
|
577 |
+
| pearson_manhattan | 0.8462 |
|
578 |
+
| spearman_manhattan | 0.849 |
|
579 |
+
| pearson_euclidean | 0.8458 |
|
580 |
+
| spearman_euclidean | 0.8487 |
|
581 |
+
| pearson_dot | 0.7756 |
|
582 |
+
| spearman_dot | 0.7756 |
|
583 |
+
| pearson_max | 0.8462 |
|
584 |
+
| spearman_max | 0.8505 |
|
585 |
+
|
586 |
+
#### Semantic Similarity
|
587 |
+
* Dataset: `sts-dev-64`
|
588 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
589 |
+
|
590 |
+
| Metric | Value |
|
591 |
+
|:--------------------|:-----------|
|
592 |
+
| pearson_cosine | 0.8177 |
|
593 |
+
| **spearman_cosine** | **0.8308** |
|
594 |
+
| pearson_manhattan | 0.8292 |
|
595 |
+
| spearman_manhattan | 0.832 |
|
596 |
+
| pearson_euclidean | 0.8311 |
|
597 |
+
| spearman_euclidean | 0.8334 |
|
598 |
+
| pearson_dot | 0.7153 |
|
599 |
+
| spearman_dot | 0.7181 |
|
600 |
+
| pearson_max | 0.8311 |
|
601 |
+
| spearman_max | 0.8334 |
|
602 |
+
|
603 |
+
#### Semantic Similarity
|
604 |
+
* Dataset: `sts-test-768`
|
605 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
606 |
+
|
607 |
+
| Metric | Value |
|
608 |
+
|:--------------------|:-----------|
|
609 |
+
| pearson_cosine | 0.8492 |
|
610 |
+
| **spearman_cosine** | **0.8569** |
|
611 |
+
| pearson_manhattan | 0.8572 |
|
612 |
+
| spearman_manhattan | 0.8566 |
|
613 |
+
| pearson_euclidean | 0.8569 |
|
614 |
+
| spearman_euclidean | 0.8567 |
|
615 |
+
| pearson_dot | 0.7969 |
|
616 |
+
| spearman_dot | 0.7879 |
|
617 |
+
| pearson_max | 0.8572 |
|
618 |
+
| spearman_max | 0.8569 |
|
619 |
+
|
620 |
+
#### Semantic Similarity
|
621 |
+
* Dataset: `sts-test-512`
|
622 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
623 |
+
|
624 |
+
| Metric | Value |
|
625 |
+
|:--------------------|:-----------|
|
626 |
+
| pearson_cosine | 0.8507 |
|
627 |
+
| **spearman_cosine** | **0.8575** |
|
628 |
+
| pearson_manhattan | 0.8564 |
|
629 |
+
| spearman_manhattan | 0.856 |
|
630 |
+
| pearson_euclidean | 0.8562 |
|
631 |
+
| spearman_euclidean | 0.8561 |
|
632 |
+
| pearson_dot | 0.7973 |
|
633 |
+
| spearman_dot | 0.7873 |
|
634 |
+
| pearson_max | 0.8564 |
|
635 |
+
| spearman_max | 0.8575 |
|
636 |
+
|
637 |
+
#### Semantic Similarity
|
638 |
+
* Dataset: `sts-test-256`
|
639 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
640 |
+
|
641 |
+
| Metric | Value |
|
642 |
+
|:--------------------|:-----------|
|
643 |
+
| pearson_cosine | 0.8467 |
|
644 |
+
| **spearman_cosine** | **0.8523** |
|
645 |
+
| pearson_manhattan | 0.8516 |
|
646 |
+
| spearman_manhattan | 0.8516 |
|
647 |
+
| pearson_euclidean | 0.8506 |
|
648 |
+
| spearman_euclidean | 0.8504 |
|
649 |
+
| pearson_dot | 0.7757 |
|
650 |
+
| spearman_dot | 0.7687 |
|
651 |
+
| pearson_max | 0.8516 |
|
652 |
+
| spearman_max | 0.8523 |
|
653 |
+
|
654 |
+
#### Semantic Similarity
|
655 |
+
* Dataset: `sts-test-128`
|
656 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
657 |
+
|
658 |
+
| Metric | Value |
|
659 |
+
|:--------------------|:-----------|
|
660 |
+
| pearson_cosine | 0.8377 |
|
661 |
+
| **spearman_cosine** | **0.8472** |
|
662 |
+
| pearson_manhattan | 0.8466 |
|
663 |
+
| spearman_manhattan | 0.8488 |
|
664 |
+
| pearson_euclidean | 0.8456 |
|
665 |
+
| spearman_euclidean | 0.8472 |
|
666 |
+
| pearson_dot | 0.7503 |
|
667 |
+
| spearman_dot | 0.7416 |
|
668 |
+
| pearson_max | 0.8466 |
|
669 |
+
| spearman_max | 0.8488 |
|
670 |
+
|
671 |
+
#### Semantic Similarity
|
672 |
+
* Dataset: `sts-test-64`
|
673 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
674 |
+
|
675 |
+
| Metric | Value |
|
676 |
+
|:--------------------|:-----------|
|
677 |
+
| pearson_cosine | 0.8174 |
|
678 |
+
| **spearman_cosine** | **0.8316** |
|
679 |
+
| pearson_manhattan | 0.832 |
|
680 |
+
| spearman_manhattan | 0.8347 |
|
681 |
+
| pearson_euclidean | 0.8335 |
|
682 |
+
| spearman_euclidean | 0.8351 |
|
683 |
+
| pearson_dot | 0.6935 |
|
684 |
+
| spearman_dot | 0.6844 |
|
685 |
+
| pearson_max | 0.8335 |
|
686 |
+
| spearman_max | 0.8351 |
|
687 |
+
|
688 |
+
<!--
|
689 |
+
## Bias, Risks and Limitations
|
690 |
+
|
691 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
692 |
+
-->
|
693 |
+
|
694 |
+
<!--
|
695 |
+
### Recommendations
|
696 |
+
|
697 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
698 |
+
-->
|
699 |
+
|
700 |
+
## Training Details
|
701 |
+
|
702 |
+
### Training Dataset
|
703 |
+
|
704 |
+
#### sentence-transformers/all-nli
|
705 |
+
|
706 |
+
* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
|
707 |
+
* Size: 10,000 training samples
|
708 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
709 |
+
* Approximate statistics based on the first 1000 samples:
|
710 |
+
| | anchor | positive | negative |
|
711 |
+
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
712 |
+
| type | string | string | string |
|
713 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 18.8 tokens</li><li>max: 89 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.84 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 12.39 tokens</li><li>max: 38 tokens</li></ul> |
|
714 |
+
* Samples:
|
715 |
+
| anchor | positive | negative |
|
716 |
+
|:----------------------------------------------------------------------------------------------------------|:--------------------------------------------------|:-------------------------------------------------------|
|
717 |
+
| <code>Side view of a female triathlete during the run.</code> | <code>A woman runs</code> | <code>A man sits</code> |
|
718 |
+
| <code>Confused person standing in the middle of the trolley tracks trying to figure out the signs.</code> | <code>A person is on the tracks.</code> | <code>A man sits in an airplane.</code> |
|
719 |
+
| <code>A woman in a black shirt, jean shorts and white tennis shoes is bowling.</code> | <code>A woman is bowling in casual clothes</code> | <code>A woman bowling wins an outfit of clothes</code> |
|
720 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
721 |
+
```json
|
722 |
+
{
|
723 |
+
"loss": "MultipleNegativesRankingLoss",
|
724 |
+
"matryoshka_dims": [
|
725 |
+
768,
|
726 |
+
512,
|
727 |
+
256,
|
728 |
+
128,
|
729 |
+
64
|
730 |
+
],
|
731 |
+
"matryoshka_weights": [
|
732 |
+
1,
|
733 |
+
1,
|
734 |
+
1,
|
735 |
+
1,
|
736 |
+
1
|
737 |
+
],
|
738 |
+
"n_dims_per_step": -1
|
739 |
+
}
|
740 |
+
```
|
741 |
+
|
742 |
+
### Evaluation Dataset
|
743 |
+
|
744 |
+
#### sentence-transformers/all-nli
|
745 |
+
|
746 |
+
* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
|
747 |
+
* Size: 6,584 evaluation samples
|
748 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
749 |
+
* Approximate statistics based on the first 1000 samples:
|
750 |
+
| | anchor | positive | negative |
|
751 |
+
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
752 |
+
| type | string | string | string |
|
753 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 18.54 tokens</li><li>max: 74 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.97 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.59 tokens</li><li>max: 29 tokens</li></ul> |
|
754 |
+
* Samples:
|
755 |
+
| anchor | positive | negative |
|
756 |
+
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
|
757 |
+
| <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
|
758 |
+
| <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
|
759 |
+
| <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
|
760 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
761 |
+
```json
|
762 |
+
{
|
763 |
+
"loss": "MultipleNegativesRankingLoss",
|
764 |
+
"matryoshka_dims": [
|
765 |
+
768,
|
766 |
+
512,
|
767 |
+
256,
|
768 |
+
128,
|
769 |
+
64
|
770 |
+
],
|
771 |
+
"matryoshka_weights": [
|
772 |
+
1,
|
773 |
+
1,
|
774 |
+
1,
|
775 |
+
1,
|
776 |
+
1
|
777 |
+
],
|
778 |
+
"n_dims_per_step": -1
|
779 |
+
}
|
780 |
+
```
|
781 |
+
|
782 |
+
### Training Hyperparameters
|
783 |
+
#### Non-Default Hyperparameters
|
784 |
+
|
785 |
+
- `eval_strategy`: steps
|
786 |
+
- `per_device_train_batch_size`: 128
|
787 |
+
- `per_device_eval_batch_size`: 128
|
788 |
+
- `num_train_epochs`: 1
|
789 |
+
- `warmup_ratio`: 0.1
|
790 |
+
- `fp16`: True
|
791 |
+
- `batch_sampler`: no_duplicates
|
792 |
+
|
793 |
+
#### All Hyperparameters
|
794 |
+
<details><summary>Click to expand</summary>
|
795 |
+
|
796 |
+
- `overwrite_output_dir`: False
|
797 |
+
- `do_predict`: False
|
798 |
+
- `eval_strategy`: steps
|
799 |
+
- `prediction_loss_only`: True
|
800 |
+
- `per_device_train_batch_size`: 128
|
801 |
+
- `per_device_eval_batch_size`: 128
|
802 |
+
- `per_gpu_train_batch_size`: None
|
803 |
+
- `per_gpu_eval_batch_size`: None
|
804 |
+
- `gradient_accumulation_steps`: 1
|
805 |
+
- `eval_accumulation_steps`: None
|
806 |
+
- `learning_rate`: 5e-05
|
807 |
+
- `weight_decay`: 0.0
|
808 |
+
- `adam_beta1`: 0.9
|
809 |
+
- `adam_beta2`: 0.999
|
810 |
+
- `adam_epsilon`: 1e-08
|
811 |
+
- `max_grad_norm`: 1.0
|
812 |
+
- `num_train_epochs`: 1
|
813 |
+
- `max_steps`: -1
|
814 |
+
- `lr_scheduler_type`: linear
|
815 |
+
- `lr_scheduler_kwargs`: {}
|
816 |
+
- `warmup_ratio`: 0.1
|
817 |
+
- `warmup_steps`: 0
|
818 |
+
- `log_level`: passive
|
819 |
+
- `log_level_replica`: warning
|
820 |
+
- `log_on_each_node`: True
|
821 |
+
- `logging_nan_inf_filter`: True
|
822 |
+
- `save_safetensors`: True
|
823 |
+
- `save_on_each_node`: False
|
824 |
+
- `save_only_model`: False
|
825 |
+
- `restore_callback_states_from_checkpoint`: False
|
826 |
+
- `no_cuda`: False
|
827 |
+
- `use_cpu`: False
|
828 |
+
- `use_mps_device`: False
|
829 |
+
- `seed`: 42
|
830 |
+
- `data_seed`: None
|
831 |
+
- `jit_mode_eval`: False
|
832 |
+
- `use_ipex`: False
|
833 |
+
- `bf16`: False
|
834 |
+
- `fp16`: True
|
835 |
+
- `fp16_opt_level`: O1
|
836 |
+
- `half_precision_backend`: auto
|
837 |
+
- `bf16_full_eval`: False
|
838 |
+
- `fp16_full_eval`: False
|
839 |
+
- `tf32`: None
|
840 |
+
- `local_rank`: 0
|
841 |
+
- `ddp_backend`: None
|
842 |
+
- `tpu_num_cores`: None
|
843 |
+
- `tpu_metrics_debug`: False
|
844 |
+
- `debug`: []
|
845 |
+
- `dataloader_drop_last`: False
|
846 |
+
- `dataloader_num_workers`: 0
|
847 |
+
- `dataloader_prefetch_factor`: None
|
848 |
+
- `past_index`: -1
|
849 |
+
- `disable_tqdm`: False
|
850 |
+
- `remove_unused_columns`: True
|
851 |
+
- `label_names`: None
|
852 |
+
- `load_best_model_at_end`: False
|
853 |
+
- `ignore_data_skip`: False
|
854 |
+
- `fsdp`: []
|
855 |
+
- `fsdp_min_num_params`: 0
|
856 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
857 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
858 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
859 |
+
- `deepspeed`: None
|
860 |
+
- `label_smoothing_factor`: 0.0
|
861 |
+
- `optim`: adamw_torch
|
862 |
+
- `optim_args`: None
|
863 |
+
- `adafactor`: False
|
864 |
+
- `group_by_length`: False
|
865 |
+
- `length_column_name`: length
|
866 |
+
- `ddp_find_unused_parameters`: None
|
867 |
+
- `ddp_bucket_cap_mb`: None
|
868 |
+
- `ddp_broadcast_buffers`: False
|
869 |
+
- `dataloader_pin_memory`: True
|
870 |
+
- `dataloader_persistent_workers`: False
|
871 |
+
- `skip_memory_metrics`: True
|
872 |
+
- `use_legacy_prediction_loop`: False
|
873 |
+
- `push_to_hub`: False
|
874 |
+
- `resume_from_checkpoint`: None
|
875 |
+
- `hub_model_id`: None
|
876 |
+
- `hub_strategy`: every_save
|
877 |
+
- `hub_private_repo`: False
|
878 |
+
- `hub_always_push`: False
|
879 |
+
- `gradient_checkpointing`: False
|
880 |
+
- `gradient_checkpointing_kwargs`: None
|
881 |
+
- `include_inputs_for_metrics`: False
|
882 |
+
- `eval_do_concat_batches`: True
|
883 |
+
- `fp16_backend`: auto
|
884 |
+
- `push_to_hub_model_id`: None
|
885 |
+
- `push_to_hub_organization`: None
|
886 |
+
- `mp_parameters`:
|
887 |
+
- `auto_find_batch_size`: False
|
888 |
+
- `full_determinism`: False
|
889 |
+
- `torchdynamo`: None
|
890 |
+
- `ray_scope`: last
|
891 |
+
- `ddp_timeout`: 1800
|
892 |
+
- `torch_compile`: False
|
893 |
+
- `torch_compile_backend`: None
|
894 |
+
- `torch_compile_mode`: None
|
895 |
+
- `dispatch_batches`: None
|
896 |
+
- `split_batches`: None
|
897 |
+
- `include_tokens_per_second`: False
|
898 |
+
- `include_num_input_tokens_seen`: False
|
899 |
+
- `neftune_noise_alpha`: None
|
900 |
+
- `optim_target_modules`: None
|
901 |
+
- `batch_eval_metrics`: False
|
902 |
+
- `batch_sampler`: no_duplicates
|
903 |
+
- `multi_dataset_batch_sampler`: proportional
|
904 |
+
|
905 |
+
</details>
|
906 |
+
|
907 |
+
### Training Logs
|
908 |
+
| Epoch | Step | Training Loss | loss | sts-dev-128_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine |
|
909 |
+
|:------:|:----:|:-------------:|:------:|:---------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|
|
910 |
+
| 0.3797 | 30 | 7.9432 | 4.2806 | 0.8509 | 0.8570 | 0.8633 | 0.8311 | 0.8644 | - | - | - | - | - |
|
911 |
+
| 0.7595 | 60 | 6.1701 | 3.9498 | 0.8505 | 0.8576 | 0.8649 | 0.8308 | 0.8663 | - | - | - | - | - |
|
912 |
+
| 1.0 | 79 | - | - | - | - | - | - | - | 0.8472 | 0.8523 | 0.8575 | 0.8316 | 0.8569 |
|
913 |
+
|
914 |
+
|
915 |
+
### Framework Versions
|
916 |
+
- Python: 3.10.12
|
917 |
+
- Sentence Transformers: 3.0.0
|
918 |
+
- Transformers: 4.41.1
|
919 |
+
- PyTorch: 2.3.0+cu121
|
920 |
+
- Accelerate: 0.30.1
|
921 |
+
- Datasets: 2.19.2
|
922 |
+
- Tokenizers: 0.19.1
|
923 |
+
|
924 |
+
## Citation
|
925 |
+
|
926 |
+
### BibTeX
|
927 |
+
|
928 |
+
#### Sentence Transformers
|
929 |
+
```bibtex
|
930 |
+
@inproceedings{reimers-2019-sentence-bert,
|
931 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
932 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
933 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
934 |
+
month = "11",
|
935 |
+
year = "2019",
|
936 |
+
publisher = "Association for Computational Linguistics",
|
937 |
+
url = "https://arxiv.org/abs/1908.10084",
|
938 |
+
}
|
939 |
+
```
|
940 |
+
|
941 |
+
#### MatryoshkaLoss
|
942 |
+
```bibtex
|
943 |
+
@misc{kusupati2024matryoshka,
|
944 |
+
title={Matryoshka Representation Learning},
|
945 |
+
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
|
946 |
+
year={2024},
|
947 |
+
eprint={2205.13147},
|
948 |
+
archivePrefix={arXiv},
|
949 |
+
primaryClass={cs.LG}
|
950 |
+
}
|
951 |
+
```
|
952 |
+
|
953 |
+
#### MultipleNegativesRankingLoss
|
954 |
+
```bibtex
|
955 |
+
@misc{henderson2017efficient,
|
956 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
957 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
958 |
+
year={2017},
|
959 |
+
eprint={1705.00652},
|
960 |
+
archivePrefix={arXiv},
|
961 |
+
primaryClass={cs.CL}
|
962 |
+
}
|
963 |
+
```
|
964 |
+
|
965 |
+
<!--
|
966 |
+
## Glossary
|
967 |
+
|
968 |
+
*Clearly define terms in order to be accessible across audiences.*
|
969 |
+
-->
|
970 |
+
|
971 |
+
<!--
|
972 |
+
## Model Card Authors
|
973 |
+
|
974 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
975 |
+
-->
|
976 |
+
|
977 |
+
<!--
|
978 |
+
## Model Card Contact
|
979 |
+
|
980 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
981 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "l3cube-pune/indic-sentence-similarity-sbert",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"embedding_size": 768,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.41.1",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 197285
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.2",
|
4 |
+
"transformers": "4.26.1",
|
5 |
+
"pytorch": "1.13.1+cu116"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b7b82af46f5399f2103276c545b9b2cdcd1249f4b411f9d2ec45221df28bd93b
|
3 |
+
size 950247272
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"103": {
|
20 |
+
"content": "[MASK]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"104": {
|
28 |
+
"content": "[CLS]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"105": {
|
36 |
+
"content": "[SEP]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": false,
|
48 |
+
"lowercase": false,
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"max_length": 512,
|
51 |
+
"model_max_length": 512,
|
52 |
+
"never_split": null,
|
53 |
+
"pad_to_multiple_of": null,
|
54 |
+
"pad_token": "[PAD]",
|
55 |
+
"pad_token_type_id": 0,
|
56 |
+
"padding_side": "right",
|
57 |
+
"sep_token": "[SEP]",
|
58 |
+
"stride": 0,
|
59 |
+
"strip_accents": false,
|
60 |
+
"tokenize_chinese_chars": true,
|
61 |
+
"tokenizer_class": "BertTokenizer",
|
62 |
+
"truncation_side": "right",
|
63 |
+
"truncation_strategy": "longest_first",
|
64 |
+
"unk_token": "[UNK]"
|
65 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|