Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +4 -0
- README.md +175 -0
- added_tokens.json +24 -0
- checkpoint-107/added_tokens.json +24 -0
- checkpoint-107/config.json +31 -0
- checkpoint-107/generation_config.json +10 -0
- checkpoint-107/latest +1 -0
- checkpoint-107/merges.txt +0 -0
- checkpoint-107/model.safetensors +3 -0
- checkpoint-107/rng_state_0.pth +3 -0
- checkpoint-107/rng_state_1.pth +3 -0
- checkpoint-107/rng_state_2.pth +3 -0
- checkpoint-107/rng_state_3.pth +3 -0
- checkpoint-107/rng_state_4.pth +3 -0
- checkpoint-107/rng_state_5.pth +3 -0
- checkpoint-107/rng_state_6.pth +3 -0
- checkpoint-107/rng_state_7.pth +3 -0
- checkpoint-107/scheduler.pt +3 -0
- checkpoint-107/special_tokens_map.json +31 -0
- checkpoint-107/tokenizer.json +3 -0
- checkpoint-107/tokenizer_config.json +208 -0
- checkpoint-107/trainer_state.json +806 -0
- checkpoint-107/training_args.bin +3 -0
- checkpoint-107/vocab.json +0 -0
- checkpoint-107/zero_to_fp32.py +760 -0
- checkpoint-214/added_tokens.json +24 -0
- checkpoint-214/config.json +31 -0
- checkpoint-214/generation_config.json +10 -0
- checkpoint-214/latest +1 -0
- checkpoint-214/merges.txt +0 -0
- checkpoint-214/model.safetensors +3 -0
- checkpoint-214/rng_state_0.pth +3 -0
- checkpoint-214/rng_state_1.pth +3 -0
- checkpoint-214/rng_state_2.pth +3 -0
- checkpoint-214/rng_state_3.pth +3 -0
- checkpoint-214/rng_state_4.pth +3 -0
- checkpoint-214/rng_state_5.pth +3 -0
- checkpoint-214/rng_state_6.pth +3 -0
- checkpoint-214/rng_state_7.pth +3 -0
- checkpoint-214/scheduler.pt +3 -0
- checkpoint-214/special_tokens_map.json +31 -0
- checkpoint-214/tokenizer.json +3 -0
- checkpoint-214/tokenizer_config.json +208 -0
- checkpoint-214/trainer_state.json +1579 -0
- checkpoint-214/training_args.bin +3 -0
- checkpoint-214/vocab.json +0 -0
- checkpoint-214/zero_to_fp32.py +760 -0
- checkpoint-321/added_tokens.json +24 -0
- checkpoint-321/config.json +31 -0
- checkpoint-321/generation_config.json +10 -0
.gitattributes
CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
checkpoint-107/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
checkpoint-214/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
38 |
+
checkpoint-321/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
39 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: Qwen/Qwen2.5-Math-1.5B-Instruct
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- train.jsonl
|
9 |
+
model-index:
|
10 |
+
- name: outputs/out
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
|
18 |
+
<details><summary>See axolotl config</summary>
|
19 |
+
|
20 |
+
axolotl version: `0.6.0`
|
21 |
+
```yaml
|
22 |
+
base_model: Qwen/Qwen2.5-Math-1.5B-Instruct
|
23 |
+
model_type: AutoModelForCausalLM
|
24 |
+
tokenizer_type: AutoTokenizer
|
25 |
+
trust_remote_code: false
|
26 |
+
|
27 |
+
load_in_8bit: false
|
28 |
+
load_in_4bit: false
|
29 |
+
strict: false
|
30 |
+
|
31 |
+
output_dir: ./outputs/out
|
32 |
+
remove_unused_columns: false
|
33 |
+
|
34 |
+
chat_template: qwen_25
|
35 |
+
# chat_template: qwen_25
|
36 |
+
datasets:
|
37 |
+
- path: train.jsonl
|
38 |
+
type: chat_template
|
39 |
+
field_messages: messages
|
40 |
+
message_field_role: role
|
41 |
+
message_field_content: content
|
42 |
+
roles:
|
43 |
+
system:
|
44 |
+
-system
|
45 |
+
user:
|
46 |
+
- user
|
47 |
+
assistant:
|
48 |
+
- assistant
|
49 |
+
|
50 |
+
dataset_prepared_path: mr1-sft-1
|
51 |
+
# dataset_prepared_path: ko_r1
|
52 |
+
val_set_size: 0.005
|
53 |
+
eval_sample_packing: False
|
54 |
+
|
55 |
+
overrides_of_model_config:
|
56 |
+
# RoPE Scaling https://github.com/huggingface/transformers/pull/24653
|
57 |
+
rope_scaling:
|
58 |
+
type: linear
|
59 |
+
factor: 8.0
|
60 |
+
|
61 |
+
sequence_len: 32768
|
62 |
+
sample_packing: False
|
63 |
+
pad_to_sequence_len: False
|
64 |
+
|
65 |
+
wandb_project: MR1
|
66 |
+
wandb_entity:
|
67 |
+
wandb_watch:
|
68 |
+
wandb_name:
|
69 |
+
wandb_log_model:
|
70 |
+
|
71 |
+
plugins:
|
72 |
+
- axolotl.integrations.liger.LigerPlugin
|
73 |
+
liger_rope: true
|
74 |
+
liger_rms_norm: true
|
75 |
+
liger_swiglu: true
|
76 |
+
liger_fused_linear_cross_entropy: true
|
77 |
+
|
78 |
+
gradient_accumulation_steps: 32
|
79 |
+
micro_batch_size: 2
|
80 |
+
eval_batch_size: 1
|
81 |
+
num_epochs: 3
|
82 |
+
optimizer: paged_adamw_8bit
|
83 |
+
lr_scheduler: cosine
|
84 |
+
learning_rate: 2e-5
|
85 |
+
|
86 |
+
train_on_inputs: false
|
87 |
+
group_by_length: false
|
88 |
+
bf16: auto
|
89 |
+
fp16:
|
90 |
+
tf32: false
|
91 |
+
|
92 |
+
gradient_checkpointing: true
|
93 |
+
gradient_checkpointing_kwargs:
|
94 |
+
use_reentrant: false
|
95 |
+
early_stopping_patience:
|
96 |
+
resume_from_checkpoint:
|
97 |
+
logging_steps: 1
|
98 |
+
xformers_attention:
|
99 |
+
flash_attention: true
|
100 |
+
|
101 |
+
warmup_ratio: 0.05
|
102 |
+
evals_per_epoch: 3
|
103 |
+
eval_max_new_tokens: 128
|
104 |
+
eval_table_size:
|
105 |
+
saves_per_epoch: 1
|
106 |
+
debug:
|
107 |
+
deepspeed: deepspeed_configs/zero3_bf16.json
|
108 |
+
weight_decay: 0.01
|
109 |
+
fsdp:
|
110 |
+
fsdp_config:
|
111 |
+
special_tokens:
|
112 |
+
eos_token:
|
113 |
+
|
114 |
+
```
|
115 |
+
|
116 |
+
</details><br>
|
117 |
+
|
118 |
+
# outputs/out
|
119 |
+
|
120 |
+
This model is a fine-tuned version of [Qwen/Qwen2.5-Math-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Math-1.5B-Instruct) on the train.jsonl dataset.
|
121 |
+
It achieves the following results on the evaluation set:
|
122 |
+
- Loss: 0.6320
|
123 |
+
|
124 |
+
## Model description
|
125 |
+
|
126 |
+
More information needed
|
127 |
+
|
128 |
+
## Intended uses & limitations
|
129 |
+
|
130 |
+
More information needed
|
131 |
+
|
132 |
+
## Training and evaluation data
|
133 |
+
|
134 |
+
More information needed
|
135 |
+
|
136 |
+
## Training procedure
|
137 |
+
|
138 |
+
### Training hyperparameters
|
139 |
+
|
140 |
+
The following hyperparameters were used during training:
|
141 |
+
- learning_rate: 2e-05
|
142 |
+
- train_batch_size: 2
|
143 |
+
- eval_batch_size: 1
|
144 |
+
- seed: 42
|
145 |
+
- distributed_type: multi-GPU
|
146 |
+
- num_devices: 8
|
147 |
+
- gradient_accumulation_steps: 32
|
148 |
+
- total_train_batch_size: 512
|
149 |
+
- total_eval_batch_size: 8
|
150 |
+
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
151 |
+
- lr_scheduler_type: cosine
|
152 |
+
- lr_scheduler_warmup_steps: 16
|
153 |
+
- num_epochs: 3.0
|
154 |
+
|
155 |
+
### Training results
|
156 |
+
|
157 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
158 |
+
|:-------------:|:------:|:----:|:---------------:|
|
159 |
+
| 4.5461 | 0.0093 | 1 | 4.5535 |
|
160 |
+
| 1.4397 | 0.3362 | 36 | 1.3349 |
|
161 |
+
| 0.8795 | 0.6723 | 72 | 0.8389 |
|
162 |
+
| 0.7726 | 1.0 | 108 | 0.7298 |
|
163 |
+
| 0.7374 | 1.3362 | 144 | 0.6811 |
|
164 |
+
| 0.6928 | 1.6723 | 180 | 0.6554 |
|
165 |
+
| 0.6742 | 2.0 | 216 | 0.6418 |
|
166 |
+
| 0.691 | 2.3362 | 252 | 0.6349 |
|
167 |
+
| 0.6656 | 2.6723 | 288 | 0.6320 |
|
168 |
+
|
169 |
+
|
170 |
+
### Framework versions
|
171 |
+
|
172 |
+
- Transformers 4.48.3
|
173 |
+
- Pytorch 2.5.1+cu121
|
174 |
+
- Datasets 3.2.0
|
175 |
+
- Tokenizers 0.21.0
|
added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
checkpoint-107/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
checkpoint-107/config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen2.5-Math-1.5B-Instruct",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"eos_token_id": 151645,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 1536,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 8960,
|
12 |
+
"max_position_embeddings": 32768,
|
13 |
+
"max_window_layers": 21,
|
14 |
+
"model_type": "qwen2",
|
15 |
+
"num_attention_heads": 12,
|
16 |
+
"num_hidden_layers": 28,
|
17 |
+
"num_key_value_heads": 2,
|
18 |
+
"rms_norm_eps": 1e-06,
|
19 |
+
"rope_scaling": {
|
20 |
+
"factor": 8.0,
|
21 |
+
"type": "linear"
|
22 |
+
},
|
23 |
+
"rope_theta": 10000.0,
|
24 |
+
"sliding_window": null,
|
25 |
+
"tie_word_embeddings": true,
|
26 |
+
"torch_dtype": "bfloat16",
|
27 |
+
"transformers_version": "4.48.3",
|
28 |
+
"use_cache": false,
|
29 |
+
"use_sliding_window": false,
|
30 |
+
"vocab_size": 151665
|
31 |
+
}
|
checkpoint-107/generation_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"transformers_version": "4.48.3"
|
10 |
+
}
|
checkpoint-107/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step107
|
checkpoint-107/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-107/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c1a094ea230a47098ca36b3fb49d7978a92b4db7164e1a3d7dfb476de21bc1a
|
3 |
+
size 3086634632
|
checkpoint-107/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:36d2a2034ebb05cb71c510897f2795b31164e50f17b270bc25d2be3ad9a17b22
|
3 |
+
size 15984
|
checkpoint-107/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:060dfdb1c49102cbdc8868a6031e68787601b4ccd782f3fb9b137e20c1fd2c7a
|
3 |
+
size 15984
|
checkpoint-107/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af01895cb66e616591f2e4baa8dcd8151530eab133c73571ccb31c74f35422ce
|
3 |
+
size 15984
|
checkpoint-107/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:677921992b1e0cef3aee776f245975003d22f51d9bd6ed20f248ded1deb72fa9
|
3 |
+
size 15984
|
checkpoint-107/rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d69353c629541c690c5471f8ec05fdab2bfecf3d37afaa436bc45939da6db68f
|
3 |
+
size 15984
|
checkpoint-107/rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e40ba6668cc03c9162c68a933d164bf38ae2d196a9a6fec03ae615491201185
|
3 |
+
size 15984
|
checkpoint-107/rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:870968fea834e24b2e099cf3e4fe1e3fb8caf38d8f8e5b790d7d47386d4d05f5
|
3 |
+
size 15984
|
checkpoint-107/rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9e19618bee7c6ef43256fea25abe19bca88535eb1e7dc213cde8929ae4e8180
|
3 |
+
size 15984
|
checkpoint-107/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42ee68d968ce6cc761e6d17993c44cf45babb9f2ad94a6958480df12ec57fe36
|
3 |
+
size 1064
|
checkpoint-107/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
checkpoint-107/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
+
size 11421896
|
checkpoint-107/tokenizer_config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"extra_special_tokens": {},
|
203 |
+
"model_max_length": 131072,
|
204 |
+
"pad_token": "<|endoftext|>",
|
205 |
+
"split_special_tokens": false,
|
206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
207 |
+
"unk_token": null
|
208 |
+
}
|
checkpoint-107/trainer_state.json
ADDED
@@ -0,0 +1,806 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.9991245987744383,
|
5 |
+
"eval_steps": 36,
|
6 |
+
"global_step": 107,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.009337613072658301,
|
13 |
+
"grad_norm": 0.6103967193596562,
|
14 |
+
"learning_rate": 1.25e-06,
|
15 |
+
"loss": 4.5461,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.009337613072658301,
|
20 |
+
"eval_loss": 4.553500175476074,
|
21 |
+
"eval_runtime": 16.4134,
|
22 |
+
"eval_samples_per_second": 16.816,
|
23 |
+
"eval_steps_per_second": 2.132,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.018675226145316602,
|
28 |
+
"grad_norm": 0.6058263693172029,
|
29 |
+
"learning_rate": 2.5e-06,
|
30 |
+
"loss": 4.5365,
|
31 |
+
"step": 2
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.028012839217974907,
|
35 |
+
"grad_norm": 0.6061325195841676,
|
36 |
+
"learning_rate": 3.7500000000000005e-06,
|
37 |
+
"loss": 4.5438,
|
38 |
+
"step": 3
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.037350452290633204,
|
42 |
+
"grad_norm": 0.5966679918377138,
|
43 |
+
"learning_rate": 5e-06,
|
44 |
+
"loss": 4.5495,
|
45 |
+
"step": 4
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.04668806536329151,
|
49 |
+
"grad_norm": 0.5637877145545853,
|
50 |
+
"learning_rate": 6.25e-06,
|
51 |
+
"loss": 4.4744,
|
52 |
+
"step": 5
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.05602567843594981,
|
56 |
+
"grad_norm": 0.4955765028851229,
|
57 |
+
"learning_rate": 7.500000000000001e-06,
|
58 |
+
"loss": 4.3581,
|
59 |
+
"step": 6
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.06536329150860812,
|
63 |
+
"grad_norm": 0.33161457169025776,
|
64 |
+
"learning_rate": 8.750000000000001e-06,
|
65 |
+
"loss": 3.9768,
|
66 |
+
"step": 7
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.07470090458126641,
|
70 |
+
"grad_norm": 0.30498618054818755,
|
71 |
+
"learning_rate": 1e-05,
|
72 |
+
"loss": 3.9306,
|
73 |
+
"step": 8
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.08403851765392471,
|
77 |
+
"grad_norm": 0.3418457910893006,
|
78 |
+
"learning_rate": 1.125e-05,
|
79 |
+
"loss": 3.6729,
|
80 |
+
"step": 9
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.09337613072658302,
|
84 |
+
"grad_norm": 0.3051650090830193,
|
85 |
+
"learning_rate": 1.25e-05,
|
86 |
+
"loss": 3.5839,
|
87 |
+
"step": 10
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.10271374379924132,
|
91 |
+
"grad_norm": 0.2540841556589586,
|
92 |
+
"learning_rate": 1.375e-05,
|
93 |
+
"loss": 3.4916,
|
94 |
+
"step": 11
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.11205135687189963,
|
98 |
+
"grad_norm": 0.2523065620988122,
|
99 |
+
"learning_rate": 1.5000000000000002e-05,
|
100 |
+
"loss": 3.3087,
|
101 |
+
"step": 12
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.12138896994455792,
|
105 |
+
"grad_norm": 0.20081817150865616,
|
106 |
+
"learning_rate": 1.6250000000000002e-05,
|
107 |
+
"loss": 3.1931,
|
108 |
+
"step": 13
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.13072658301721624,
|
112 |
+
"grad_norm": 0.1823149251708444,
|
113 |
+
"learning_rate": 1.7500000000000002e-05,
|
114 |
+
"loss": 3.1415,
|
115 |
+
"step": 14
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.14006419608987453,
|
119 |
+
"grad_norm": 0.15949645404615334,
|
120 |
+
"learning_rate": 1.8750000000000002e-05,
|
121 |
+
"loss": 3.0393,
|
122 |
+
"step": 15
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.14940180916253282,
|
126 |
+
"grad_norm": 0.1325611844716812,
|
127 |
+
"learning_rate": 2e-05,
|
128 |
+
"loss": 2.8927,
|
129 |
+
"step": 16
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.15873942223519114,
|
133 |
+
"grad_norm": 0.11464751241192053,
|
134 |
+
"learning_rate": 1.9999469523400122e-05,
|
135 |
+
"loss": 2.7378,
|
136 |
+
"step": 17
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.16807703530784943,
|
140 |
+
"grad_norm": 0.1070431164754716,
|
141 |
+
"learning_rate": 1.9997878149881576e-05,
|
142 |
+
"loss": 2.6558,
|
143 |
+
"step": 18
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.17741464838050774,
|
147 |
+
"grad_norm": 0.10433083170549438,
|
148 |
+
"learning_rate": 1.999522604828164e-05,
|
149 |
+
"loss": 2.534,
|
150 |
+
"step": 19
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.18675226145316604,
|
154 |
+
"grad_norm": 0.10117296773389844,
|
155 |
+
"learning_rate": 1.9991513499975883e-05,
|
156 |
+
"loss": 2.4259,
|
157 |
+
"step": 20
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.19608987452582433,
|
161 |
+
"grad_norm": 0.09323265692759455,
|
162 |
+
"learning_rate": 1.9986740898848306e-05,
|
163 |
+
"loss": 2.3488,
|
164 |
+
"step": 21
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.20542748759848264,
|
168 |
+
"grad_norm": 0.07868283241281675,
|
169 |
+
"learning_rate": 1.9980908751249556e-05,
|
170 |
+
"loss": 2.2658,
|
171 |
+
"step": 22
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.21476510067114093,
|
175 |
+
"grad_norm": 0.07548690533550786,
|
176 |
+
"learning_rate": 1.997401767594319e-05,
|
177 |
+
"loss": 2.1874,
|
178 |
+
"step": 23
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.22410271374379925,
|
182 |
+
"grad_norm": 0.07720457793760661,
|
183 |
+
"learning_rate": 1.996606840404006e-05,
|
184 |
+
"loss": 2.0998,
|
185 |
+
"step": 24
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.23344032681645754,
|
189 |
+
"grad_norm": 0.07639897047393754,
|
190 |
+
"learning_rate": 1.9957061778920703e-05,
|
191 |
+
"loss": 2.0469,
|
192 |
+
"step": 25
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.24277793988911583,
|
196 |
+
"grad_norm": 0.07016046755367683,
|
197 |
+
"learning_rate": 1.9946998756145894e-05,
|
198 |
+
"loss": 1.9562,
|
199 |
+
"step": 26
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.2521155529617741,
|
203 |
+
"grad_norm": 0.06084064670530258,
|
204 |
+
"learning_rate": 1.9935880403355255e-05,
|
205 |
+
"loss": 1.8943,
|
206 |
+
"step": 27
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.26145316603443247,
|
210 |
+
"grad_norm": 0.05530834717342951,
|
211 |
+
"learning_rate": 1.9923707900153984e-05,
|
212 |
+
"loss": 1.7771,
|
213 |
+
"step": 28
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.27079077910709076,
|
217 |
+
"grad_norm": 0.05296398833585214,
|
218 |
+
"learning_rate": 1.9910482537987704e-05,
|
219 |
+
"loss": 1.7624,
|
220 |
+
"step": 29
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 0.28012839217974905,
|
224 |
+
"grad_norm": 0.05206178996458072,
|
225 |
+
"learning_rate": 1.989620572000544e-05,
|
226 |
+
"loss": 1.6848,
|
227 |
+
"step": 30
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 0.28946600525240734,
|
231 |
+
"grad_norm": 0.050431830710485716,
|
232 |
+
"learning_rate": 1.9880878960910772e-05,
|
233 |
+
"loss": 1.6577,
|
234 |
+
"step": 31
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.29880361832506563,
|
238 |
+
"grad_norm": 0.04760195929852826,
|
239 |
+
"learning_rate": 1.9864503886801108e-05,
|
240 |
+
"loss": 1.6128,
|
241 |
+
"step": 32
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.308141231397724,
|
245 |
+
"grad_norm": 0.04482797539629353,
|
246 |
+
"learning_rate": 1.9847082234995172e-05,
|
247 |
+
"loss": 1.5791,
|
248 |
+
"step": 33
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.31747884447038227,
|
252 |
+
"grad_norm": 0.04130893521590142,
|
253 |
+
"learning_rate": 1.982861585384869e-05,
|
254 |
+
"loss": 1.5063,
|
255 |
+
"step": 34
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.32681645754304056,
|
259 |
+
"grad_norm": 0.04057758728502848,
|
260 |
+
"learning_rate": 1.9809106702558277e-05,
|
261 |
+
"loss": 1.4877,
|
262 |
+
"step": 35
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"epoch": 0.33615407061569885,
|
266 |
+
"grad_norm": 0.038180219331760724,
|
267 |
+
"learning_rate": 1.978855685095358e-05,
|
268 |
+
"loss": 1.4397,
|
269 |
+
"step": 36
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.33615407061569885,
|
273 |
+
"eval_loss": 1.3349355459213257,
|
274 |
+
"eval_runtime": 16.413,
|
275 |
+
"eval_samples_per_second": 16.816,
|
276 |
+
"eval_steps_per_second": 2.132,
|
277 |
+
"step": 36
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"epoch": 0.34549168368835714,
|
281 |
+
"grad_norm": 0.0360323358530499,
|
282 |
+
"learning_rate": 1.9766968479277684e-05,
|
283 |
+
"loss": 1.3977,
|
284 |
+
"step": 37
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 0.3548292967610155,
|
288 |
+
"grad_norm": 0.035146043601200425,
|
289 |
+
"learning_rate": 1.974434387795579e-05,
|
290 |
+
"loss": 1.418,
|
291 |
+
"step": 38
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.3641669098336738,
|
295 |
+
"grad_norm": 0.033121913235728655,
|
296 |
+
"learning_rate": 1.972068544735221e-05,
|
297 |
+
"loss": 1.3359,
|
298 |
+
"step": 39
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"epoch": 0.37350452290633207,
|
302 |
+
"grad_norm": 0.031036722451915032,
|
303 |
+
"learning_rate": 1.969599569751571e-05,
|
304 |
+
"loss": 1.3401,
|
305 |
+
"step": 40
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 0.38284213597899036,
|
309 |
+
"grad_norm": 0.030669047831503912,
|
310 |
+
"learning_rate": 1.9670277247913205e-05,
|
311 |
+
"loss": 1.2638,
|
312 |
+
"step": 41
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"epoch": 0.39217974905164865,
|
316 |
+
"grad_norm": 0.03002785386211285,
|
317 |
+
"learning_rate": 1.964353282715183e-05,
|
318 |
+
"loss": 1.2649,
|
319 |
+
"step": 42
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"epoch": 0.401517362124307,
|
323 |
+
"grad_norm": 0.02817025139456513,
|
324 |
+
"learning_rate": 1.961576527268946e-05,
|
325 |
+
"loss": 1.2476,
|
326 |
+
"step": 43
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 0.4108549751969653,
|
330 |
+
"grad_norm": 0.03110381051330927,
|
331 |
+
"learning_rate": 1.9586977530533677e-05,
|
332 |
+
"loss": 1.1923,
|
333 |
+
"step": 44
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.4201925882696236,
|
337 |
+
"grad_norm": 0.031162812150372473,
|
338 |
+
"learning_rate": 1.95571726549292e-05,
|
339 |
+
"loss": 1.2044,
|
340 |
+
"step": 45
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"epoch": 0.42953020134228187,
|
344 |
+
"grad_norm": 0.029584239693380046,
|
345 |
+
"learning_rate": 1.9526353808033827e-05,
|
346 |
+
"loss": 1.1764,
|
347 |
+
"step": 46
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"epoch": 0.43886781441494016,
|
351 |
+
"grad_norm": 0.027540684267770742,
|
352 |
+
"learning_rate": 1.9494524259582994e-05,
|
353 |
+
"loss": 1.1634,
|
354 |
+
"step": 47
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 0.4482054274875985,
|
358 |
+
"grad_norm": 0.028821860863637565,
|
359 |
+
"learning_rate": 1.9461687386542826e-05,
|
360 |
+
"loss": 1.1426,
|
361 |
+
"step": 48
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 0.4575430405602568,
|
365 |
+
"grad_norm": 0.027945951918964533,
|
366 |
+
"learning_rate": 1.9427846672751873e-05,
|
367 |
+
"loss": 1.1154,
|
368 |
+
"step": 49
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 0.4668806536329151,
|
372 |
+
"grad_norm": 0.026881160663849425,
|
373 |
+
"learning_rate": 1.93930057085515e-05,
|
374 |
+
"loss": 1.0981,
|
375 |
+
"step": 50
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 0.4762182667055734,
|
379 |
+
"grad_norm": 0.025002230522002903,
|
380 |
+
"learning_rate": 1.9357168190404937e-05,
|
381 |
+
"loss": 1.0873,
|
382 |
+
"step": 51
|
383 |
+
},
|
384 |
+
{
|
385 |
+
"epoch": 0.48555587977823167,
|
386 |
+
"grad_norm": 0.02318894097448886,
|
387 |
+
"learning_rate": 1.932033792050515e-05,
|
388 |
+
"loss": 1.0701,
|
389 |
+
"step": 52
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 0.49489349285089,
|
393 |
+
"grad_norm": 0.021872991266037325,
|
394 |
+
"learning_rate": 1.928251880637141e-05,
|
395 |
+
"loss": 1.0439,
|
396 |
+
"step": 53
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"epoch": 0.5042311059235483,
|
400 |
+
"grad_norm": 0.021369213964442125,
|
401 |
+
"learning_rate": 1.924371486043473e-05,
|
402 |
+
"loss": 1.062,
|
403 |
+
"step": 54
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"epoch": 0.5135687189962066,
|
407 |
+
"grad_norm": 0.02074830989778219,
|
408 |
+
"learning_rate": 1.920393019961217e-05,
|
409 |
+
"loss": 1.0392,
|
410 |
+
"step": 55
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 0.5229063320688649,
|
414 |
+
"grad_norm": 0.020345018132100934,
|
415 |
+
"learning_rate": 1.916316904487005e-05,
|
416 |
+
"loss": 1.02,
|
417 |
+
"step": 56
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.5322439451415232,
|
421 |
+
"grad_norm": 0.01970957719141645,
|
422 |
+
"learning_rate": 1.9121435720776122e-05,
|
423 |
+
"loss": 0.9923,
|
424 |
+
"step": 57
|
425 |
+
},
|
426 |
+
{
|
427 |
+
"epoch": 0.5415815582141815,
|
428 |
+
"grad_norm": 0.019741562276937644,
|
429 |
+
"learning_rate": 1.9078734655040763e-05,
|
430 |
+
"loss": 0.9993,
|
431 |
+
"step": 58
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 0.5509191712868398,
|
435 |
+
"grad_norm": 0.0195142739708107,
|
436 |
+
"learning_rate": 1.9035070378047204e-05,
|
437 |
+
"loss": 0.9943,
|
438 |
+
"step": 59
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"epoch": 0.5602567843594981,
|
442 |
+
"grad_norm": 0.017297498916208055,
|
443 |
+
"learning_rate": 1.8990447522370886e-05,
|
444 |
+
"loss": 0.9753,
|
445 |
+
"step": 60
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"epoch": 0.5695943974321565,
|
449 |
+
"grad_norm": 0.01658779952035472,
|
450 |
+
"learning_rate": 1.8944870822287957e-05,
|
451 |
+
"loss": 0.9883,
|
452 |
+
"step": 61
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 0.5789320105048147,
|
456 |
+
"grad_norm": 0.018530815854782102,
|
457 |
+
"learning_rate": 1.8898345113273e-05,
|
458 |
+
"loss": 0.9482,
|
459 |
+
"step": 62
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.588269623577473,
|
463 |
+
"grad_norm": 0.017748842064851857,
|
464 |
+
"learning_rate": 1.8850875331485996e-05,
|
465 |
+
"loss": 0.9533,
|
466 |
+
"step": 63
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 0.5976072366501313,
|
470 |
+
"grad_norm": 0.016871546397150952,
|
471 |
+
"learning_rate": 1.8802466513248635e-05,
|
472 |
+
"loss": 0.948,
|
473 |
+
"step": 64
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"epoch": 0.6069448497227896,
|
477 |
+
"grad_norm": 0.01608669807726683,
|
478 |
+
"learning_rate": 1.8753123794509974e-05,
|
479 |
+
"loss": 0.9295,
|
480 |
+
"step": 65
|
481 |
+
},
|
482 |
+
{
|
483 |
+
"epoch": 0.616282462795448,
|
484 |
+
"grad_norm": 0.017453769141315367,
|
485 |
+
"learning_rate": 1.8702852410301556e-05,
|
486 |
+
"loss": 0.9198,
|
487 |
+
"step": 66
|
488 |
+
},
|
489 |
+
{
|
490 |
+
"epoch": 0.6256200758681062,
|
491 |
+
"grad_norm": 0.017655286026566987,
|
492 |
+
"learning_rate": 1.865165769418196e-05,
|
493 |
+
"loss": 0.9535,
|
494 |
+
"step": 67
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 0.6349576889407645,
|
498 |
+
"grad_norm": 0.017498254303415152,
|
499 |
+
"learning_rate": 1.8599545077670983e-05,
|
500 |
+
"loss": 0.9278,
|
501 |
+
"step": 68
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 0.6442953020134228,
|
505 |
+
"grad_norm": 0.01573094552466445,
|
506 |
+
"learning_rate": 1.854652008967335e-05,
|
507 |
+
"loss": 0.912,
|
508 |
+
"step": 69
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"epoch": 0.6536329150860811,
|
512 |
+
"grad_norm": 0.015035283908585596,
|
513 |
+
"learning_rate": 1.8492588355892125e-05,
|
514 |
+
"loss": 0.9182,
|
515 |
+
"step": 70
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"epoch": 0.6629705281587395,
|
519 |
+
"grad_norm": 0.01593275185300073,
|
520 |
+
"learning_rate": 1.8437755598231857e-05,
|
521 |
+
"loss": 0.9109,
|
522 |
+
"step": 71
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"epoch": 0.6723081412313977,
|
526 |
+
"grad_norm": 0.014842299347889509,
|
527 |
+
"learning_rate": 1.8382027634191523e-05,
|
528 |
+
"loss": 0.8795,
|
529 |
+
"step": 72
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"epoch": 0.6723081412313977,
|
533 |
+
"eval_loss": 0.8388988375663757,
|
534 |
+
"eval_runtime": 16.5273,
|
535 |
+
"eval_samples_per_second": 16.7,
|
536 |
+
"eval_steps_per_second": 2.118,
|
537 |
+
"step": 72
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 0.681645754304056,
|
541 |
+
"grad_norm": 0.015086756882680958,
|
542 |
+
"learning_rate": 1.8325410376247295e-05,
|
543 |
+
"loss": 0.8793,
|
544 |
+
"step": 73
|
545 |
+
},
|
546 |
+
{
|
547 |
+
"epoch": 0.6909833673767143,
|
548 |
+
"grad_norm": 0.014400642274755383,
|
549 |
+
"learning_rate": 1.826790983122527e-05,
|
550 |
+
"loss": 0.9139,
|
551 |
+
"step": 74
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"epoch": 0.7003209804493726,
|
555 |
+
"grad_norm": 0.013490998034899438,
|
556 |
+
"learning_rate": 1.8209532099664177e-05,
|
557 |
+
"loss": 0.8767,
|
558 |
+
"step": 75
|
559 |
+
},
|
560 |
+
{
|
561 |
+
"epoch": 0.709658593522031,
|
562 |
+
"grad_norm": 0.011444201595399665,
|
563 |
+
"learning_rate": 1.8150283375168112e-05,
|
564 |
+
"loss": 0.8525,
|
565 |
+
"step": 76
|
566 |
+
},
|
567 |
+
{
|
568 |
+
"epoch": 0.7189962065946892,
|
569 |
+
"grad_norm": 0.01133323463508391,
|
570 |
+
"learning_rate": 1.8090169943749477e-05,
|
571 |
+
"loss": 0.8658,
|
572 |
+
"step": 77
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 0.7283338196673476,
|
576 |
+
"grad_norm": 0.011984830212373445,
|
577 |
+
"learning_rate": 1.8029198183162e-05,
|
578 |
+
"loss": 0.856,
|
579 |
+
"step": 78
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 0.7376714327400058,
|
583 |
+
"grad_norm": 0.01217011221195066,
|
584 |
+
"learning_rate": 1.796737456222413e-05,
|
585 |
+
"loss": 0.8892,
|
586 |
+
"step": 79
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 0.7470090458126641,
|
590 |
+
"grad_norm": 0.012510369655517745,
|
591 |
+
"learning_rate": 1.7904705640132717e-05,
|
592 |
+
"loss": 0.8562,
|
593 |
+
"step": 80
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"epoch": 0.7563466588853225,
|
597 |
+
"grad_norm": 0.011806935544189488,
|
598 |
+
"learning_rate": 1.7841198065767107e-05,
|
599 |
+
"loss": 0.8644,
|
600 |
+
"step": 81
|
601 |
+
},
|
602 |
+
{
|
603 |
+
"epoch": 0.7656842719579807,
|
604 |
+
"grad_norm": 0.011433541340869584,
|
605 |
+
"learning_rate": 1.7776858576983713e-05,
|
606 |
+
"loss": 0.8692,
|
607 |
+
"step": 82
|
608 |
+
},
|
609 |
+
{
|
610 |
+
"epoch": 0.7750218850306391,
|
611 |
+
"grad_norm": 0.012566348663586087,
|
612 |
+
"learning_rate": 1.771169399990119e-05,
|
613 |
+
"loss": 0.8541,
|
614 |
+
"step": 83
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 0.7843594981032973,
|
618 |
+
"grad_norm": 0.01072107470914378,
|
619 |
+
"learning_rate": 1.7645711248176198e-05,
|
620 |
+
"loss": 0.8403,
|
621 |
+
"step": 84
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 0.7936971111759556,
|
625 |
+
"grad_norm": 0.010617575681982286,
|
626 |
+
"learning_rate": 1.7578917322269885e-05,
|
627 |
+
"loss": 0.81,
|
628 |
+
"step": 85
|
629 |
+
},
|
630 |
+
{
|
631 |
+
"epoch": 0.803034724248614,
|
632 |
+
"grad_norm": 0.010466741230697605,
|
633 |
+
"learning_rate": 1.7511319308705198e-05,
|
634 |
+
"loss": 0.8253,
|
635 |
+
"step": 86
|
636 |
+
},
|
637 |
+
{
|
638 |
+
"epoch": 0.8123723373212722,
|
639 |
+
"grad_norm": 0.010184306281966645,
|
640 |
+
"learning_rate": 1.744292437931502e-05,
|
641 |
+
"loss": 0.8526,
|
642 |
+
"step": 87
|
643 |
+
},
|
644 |
+
{
|
645 |
+
"epoch": 0.8217099503939306,
|
646 |
+
"grad_norm": 0.009850665553519504,
|
647 |
+
"learning_rate": 1.7373739790481263e-05,
|
648 |
+
"loss": 0.8304,
|
649 |
+
"step": 88
|
650 |
+
},
|
651 |
+
{
|
652 |
+
"epoch": 0.8310475634665888,
|
653 |
+
"grad_norm": 0.009236577038055978,
|
654 |
+
"learning_rate": 1.7303772882365018e-05,
|
655 |
+
"loss": 0.7908,
|
656 |
+
"step": 89
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 0.8403851765392472,
|
660 |
+
"grad_norm": 0.03711865800548727,
|
661 |
+
"learning_rate": 1.723303107812779e-05,
|
662 |
+
"loss": 0.8085,
|
663 |
+
"step": 90
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 0.8497227896119055,
|
667 |
+
"grad_norm": 0.010517236470326855,
|
668 |
+
"learning_rate": 1.7161521883143936e-05,
|
669 |
+
"loss": 0.8313,
|
670 |
+
"step": 91
|
671 |
+
},
|
672 |
+
{
|
673 |
+
"epoch": 0.8590604026845637,
|
674 |
+
"grad_norm": 0.011238580368575812,
|
675 |
+
"learning_rate": 1.7089252884204376e-05,
|
676 |
+
"loss": 0.814,
|
677 |
+
"step": 92
|
678 |
+
},
|
679 |
+
{
|
680 |
+
"epoch": 0.8683980157572221,
|
681 |
+
"grad_norm": 0.009935862606933948,
|
682 |
+
"learning_rate": 1.701623174871168e-05,
|
683 |
+
"loss": 0.8032,
|
684 |
+
"step": 93
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 0.8777356288298803,
|
688 |
+
"grad_norm": 0.009655128505771573,
|
689 |
+
"learning_rate": 1.6942466223866582e-05,
|
690 |
+
"loss": 0.8013,
|
691 |
+
"step": 94
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 0.8870732419025387,
|
695 |
+
"grad_norm": 0.010463930618313586,
|
696 |
+
"learning_rate": 1.6867964135846043e-05,
|
697 |
+
"loss": 0.8116,
|
698 |
+
"step": 95
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 0.896410854975197,
|
702 |
+
"grad_norm": 0.009360797680160574,
|
703 |
+
"learning_rate": 1.679273338897293e-05,
|
704 |
+
"loss": 0.8064,
|
705 |
+
"step": 96
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"epoch": 0.9057484680478552,
|
709 |
+
"grad_norm": 0.00968251573081083,
|
710 |
+
"learning_rate": 1.6716781964877413e-05,
|
711 |
+
"loss": 0.8208,
|
712 |
+
"step": 97
|
713 |
+
},
|
714 |
+
{
|
715 |
+
"epoch": 0.9150860811205136,
|
716 |
+
"grad_norm": 0.009894122849502883,
|
717 |
+
"learning_rate": 1.664011792165012e-05,
|
718 |
+
"loss": 0.8042,
|
719 |
+
"step": 98
|
720 |
+
},
|
721 |
+
{
|
722 |
+
"epoch": 0.9244236941931718,
|
723 |
+
"grad_norm": 0.010626027391586145,
|
724 |
+
"learning_rate": 1.6562749392987255e-05,
|
725 |
+
"loss": 0.8037,
|
726 |
+
"step": 99
|
727 |
+
},
|
728 |
+
{
|
729 |
+
"epoch": 0.9337613072658302,
|
730 |
+
"grad_norm": 0.01083144628829605,
|
731 |
+
"learning_rate": 1.648468458732762e-05,
|
732 |
+
"loss": 0.8079,
|
733 |
+
"step": 100
|
734 |
+
},
|
735 |
+
{
|
736 |
+
"epoch": 0.9430989203384885,
|
737 |
+
"grad_norm": 0.012651590456989211,
|
738 |
+
"learning_rate": 1.6405931786981753e-05,
|
739 |
+
"loss": 0.7903,
|
740 |
+
"step": 101
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 0.9524365334111468,
|
744 |
+
"grad_norm": 0.010619166674062264,
|
745 |
+
"learning_rate": 1.6326499347253206e-05,
|
746 |
+
"loss": 0.7783,
|
747 |
+
"step": 102
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"epoch": 0.9617741464838051,
|
751 |
+
"grad_norm": 0.009320303165881526,
|
752 |
+
"learning_rate": 1.6246395695552086e-05,
|
753 |
+
"loss": 0.8035,
|
754 |
+
"step": 103
|
755 |
+
},
|
756 |
+
{
|
757 |
+
"epoch": 0.9711117595564633,
|
758 |
+
"grad_norm": 0.009094019045947338,
|
759 |
+
"learning_rate": 1.6165629330500952e-05,
|
760 |
+
"loss": 0.7839,
|
761 |
+
"step": 104
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"epoch": 0.9804493726291217,
|
765 |
+
"grad_norm": 0.009044004451355656,
|
766 |
+
"learning_rate": 1.6084208821033152e-05,
|
767 |
+
"loss": 0.7641,
|
768 |
+
"step": 105
|
769 |
+
},
|
770 |
+
{
|
771 |
+
"epoch": 0.98978698570178,
|
772 |
+
"grad_norm": 0.009202270165387296,
|
773 |
+
"learning_rate": 1.6002142805483686e-05,
|
774 |
+
"loss": 0.7666,
|
775 |
+
"step": 106
|
776 |
+
},
|
777 |
+
{
|
778 |
+
"epoch": 0.9991245987744383,
|
779 |
+
"grad_norm": 0.009577150303950122,
|
780 |
+
"learning_rate": 1.591943999067273e-05,
|
781 |
+
"loss": 0.7869,
|
782 |
+
"step": 107
|
783 |
+
}
|
784 |
+
],
|
785 |
+
"logging_steps": 1,
|
786 |
+
"max_steps": 321,
|
787 |
+
"num_input_tokens_seen": 0,
|
788 |
+
"num_train_epochs": 3,
|
789 |
+
"save_steps": 107,
|
790 |
+
"stateful_callbacks": {
|
791 |
+
"TrainerControl": {
|
792 |
+
"args": {
|
793 |
+
"should_epoch_stop": false,
|
794 |
+
"should_evaluate": false,
|
795 |
+
"should_log": false,
|
796 |
+
"should_save": true,
|
797 |
+
"should_training_stop": false
|
798 |
+
},
|
799 |
+
"attributes": {}
|
800 |
+
}
|
801 |
+
},
|
802 |
+
"total_flos": 3.037539103106138e+18,
|
803 |
+
"train_batch_size": 2,
|
804 |
+
"trial_name": null,
|
805 |
+
"trial_params": null
|
806 |
+
}
|
checkpoint-107/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c22096e6a9c9dea84f12ad6313d09723c960a987f46ad9af04dc6c1de407c91
|
3 |
+
size 10872
|
checkpoint-107/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-107/zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
checkpoint-214/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
checkpoint-214/config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen2.5-Math-1.5B-Instruct",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"eos_token_id": 151645,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 1536,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 8960,
|
12 |
+
"max_position_embeddings": 32768,
|
13 |
+
"max_window_layers": 21,
|
14 |
+
"model_type": "qwen2",
|
15 |
+
"num_attention_heads": 12,
|
16 |
+
"num_hidden_layers": 28,
|
17 |
+
"num_key_value_heads": 2,
|
18 |
+
"rms_norm_eps": 1e-06,
|
19 |
+
"rope_scaling": {
|
20 |
+
"factor": 8.0,
|
21 |
+
"type": "linear"
|
22 |
+
},
|
23 |
+
"rope_theta": 10000.0,
|
24 |
+
"sliding_window": null,
|
25 |
+
"tie_word_embeddings": true,
|
26 |
+
"torch_dtype": "bfloat16",
|
27 |
+
"transformers_version": "4.48.3",
|
28 |
+
"use_cache": false,
|
29 |
+
"use_sliding_window": false,
|
30 |
+
"vocab_size": 151665
|
31 |
+
}
|
checkpoint-214/generation_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"transformers_version": "4.48.3"
|
10 |
+
}
|
checkpoint-214/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step213
|
checkpoint-214/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-214/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dfdd9e83239574e821a0b2e3a7b4de9e30eb846275fcb8c03ee376106f1210b3
|
3 |
+
size 3086634632
|
checkpoint-214/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ee195ebde9bf012f945f068f133e7fe22fef5450c496607e3ef11cc2034a186
|
3 |
+
size 15984
|
checkpoint-214/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf0fe1a3315d60b197207c5cb249d0ce4f9ce6d7585e696276d9ffbcb5379893
|
3 |
+
size 15984
|
checkpoint-214/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:01c5bd6eae04542162b3e94245555bd81312524066bc01d0ebbfc4fd8554240e
|
3 |
+
size 15984
|
checkpoint-214/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45b74942c68b00d657cfce186b0eeb4aa8f52efa04b114803b605fee8de45972
|
3 |
+
size 15984
|
checkpoint-214/rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0cd66dd2ba958fc9929441817d8154abbd929c0aa9cd66ff3171965bdaaf5d78
|
3 |
+
size 15984
|
checkpoint-214/rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89eeedefdd62514d0130acc330a5c08e9774c95d38c60997905cfd65fc54b710
|
3 |
+
size 15984
|
checkpoint-214/rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f43ced939100082608f57561a10e1888e69210c80675068db530c5815889910e
|
3 |
+
size 15984
|
checkpoint-214/rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d8d6ee244d99525e7004ae3f02d44ae63082d81fbbab7306f641ac6aeeb736f
|
3 |
+
size 15984
|
checkpoint-214/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d2f0db282a9cd753eddd7ae2d5f2dc0a710bfada7c6671a4b3d7125f8773e81
|
3 |
+
size 1064
|
checkpoint-214/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
checkpoint-214/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
+
size 11421896
|
checkpoint-214/tokenizer_config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"extra_special_tokens": {},
|
203 |
+
"model_max_length": 131072,
|
204 |
+
"pad_token": "<|endoftext|>",
|
205 |
+
"split_special_tokens": false,
|
206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
207 |
+
"unk_token": null
|
208 |
+
}
|
checkpoint-214/trainer_state.json
ADDED
@@ -0,0 +1,1579 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.98978698570178,
|
5 |
+
"eval_steps": 36,
|
6 |
+
"global_step": 214,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.009337613072658301,
|
13 |
+
"grad_norm": 0.6103967193596562,
|
14 |
+
"learning_rate": 1.25e-06,
|
15 |
+
"loss": 4.5461,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.009337613072658301,
|
20 |
+
"eval_loss": 4.553500175476074,
|
21 |
+
"eval_runtime": 16.4134,
|
22 |
+
"eval_samples_per_second": 16.816,
|
23 |
+
"eval_steps_per_second": 2.132,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.018675226145316602,
|
28 |
+
"grad_norm": 0.6058263693172029,
|
29 |
+
"learning_rate": 2.5e-06,
|
30 |
+
"loss": 4.5365,
|
31 |
+
"step": 2
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.028012839217974907,
|
35 |
+
"grad_norm": 0.6061325195841676,
|
36 |
+
"learning_rate": 3.7500000000000005e-06,
|
37 |
+
"loss": 4.5438,
|
38 |
+
"step": 3
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.037350452290633204,
|
42 |
+
"grad_norm": 0.5966679918377138,
|
43 |
+
"learning_rate": 5e-06,
|
44 |
+
"loss": 4.5495,
|
45 |
+
"step": 4
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.04668806536329151,
|
49 |
+
"grad_norm": 0.5637877145545853,
|
50 |
+
"learning_rate": 6.25e-06,
|
51 |
+
"loss": 4.4744,
|
52 |
+
"step": 5
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.05602567843594981,
|
56 |
+
"grad_norm": 0.4955765028851229,
|
57 |
+
"learning_rate": 7.500000000000001e-06,
|
58 |
+
"loss": 4.3581,
|
59 |
+
"step": 6
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.06536329150860812,
|
63 |
+
"grad_norm": 0.33161457169025776,
|
64 |
+
"learning_rate": 8.750000000000001e-06,
|
65 |
+
"loss": 3.9768,
|
66 |
+
"step": 7
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.07470090458126641,
|
70 |
+
"grad_norm": 0.30498618054818755,
|
71 |
+
"learning_rate": 1e-05,
|
72 |
+
"loss": 3.9306,
|
73 |
+
"step": 8
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.08403851765392471,
|
77 |
+
"grad_norm": 0.3418457910893006,
|
78 |
+
"learning_rate": 1.125e-05,
|
79 |
+
"loss": 3.6729,
|
80 |
+
"step": 9
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.09337613072658302,
|
84 |
+
"grad_norm": 0.3051650090830193,
|
85 |
+
"learning_rate": 1.25e-05,
|
86 |
+
"loss": 3.5839,
|
87 |
+
"step": 10
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.10271374379924132,
|
91 |
+
"grad_norm": 0.2540841556589586,
|
92 |
+
"learning_rate": 1.375e-05,
|
93 |
+
"loss": 3.4916,
|
94 |
+
"step": 11
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.11205135687189963,
|
98 |
+
"grad_norm": 0.2523065620988122,
|
99 |
+
"learning_rate": 1.5000000000000002e-05,
|
100 |
+
"loss": 3.3087,
|
101 |
+
"step": 12
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.12138896994455792,
|
105 |
+
"grad_norm": 0.20081817150865616,
|
106 |
+
"learning_rate": 1.6250000000000002e-05,
|
107 |
+
"loss": 3.1931,
|
108 |
+
"step": 13
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.13072658301721624,
|
112 |
+
"grad_norm": 0.1823149251708444,
|
113 |
+
"learning_rate": 1.7500000000000002e-05,
|
114 |
+
"loss": 3.1415,
|
115 |
+
"step": 14
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.14006419608987453,
|
119 |
+
"grad_norm": 0.15949645404615334,
|
120 |
+
"learning_rate": 1.8750000000000002e-05,
|
121 |
+
"loss": 3.0393,
|
122 |
+
"step": 15
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.14940180916253282,
|
126 |
+
"grad_norm": 0.1325611844716812,
|
127 |
+
"learning_rate": 2e-05,
|
128 |
+
"loss": 2.8927,
|
129 |
+
"step": 16
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.15873942223519114,
|
133 |
+
"grad_norm": 0.11464751241192053,
|
134 |
+
"learning_rate": 1.9999469523400122e-05,
|
135 |
+
"loss": 2.7378,
|
136 |
+
"step": 17
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.16807703530784943,
|
140 |
+
"grad_norm": 0.1070431164754716,
|
141 |
+
"learning_rate": 1.9997878149881576e-05,
|
142 |
+
"loss": 2.6558,
|
143 |
+
"step": 18
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.17741464838050774,
|
147 |
+
"grad_norm": 0.10433083170549438,
|
148 |
+
"learning_rate": 1.999522604828164e-05,
|
149 |
+
"loss": 2.534,
|
150 |
+
"step": 19
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.18675226145316604,
|
154 |
+
"grad_norm": 0.10117296773389844,
|
155 |
+
"learning_rate": 1.9991513499975883e-05,
|
156 |
+
"loss": 2.4259,
|
157 |
+
"step": 20
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.19608987452582433,
|
161 |
+
"grad_norm": 0.09323265692759455,
|
162 |
+
"learning_rate": 1.9986740898848306e-05,
|
163 |
+
"loss": 2.3488,
|
164 |
+
"step": 21
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.20542748759848264,
|
168 |
+
"grad_norm": 0.07868283241281675,
|
169 |
+
"learning_rate": 1.9980908751249556e-05,
|
170 |
+
"loss": 2.2658,
|
171 |
+
"step": 22
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.21476510067114093,
|
175 |
+
"grad_norm": 0.07548690533550786,
|
176 |
+
"learning_rate": 1.997401767594319e-05,
|
177 |
+
"loss": 2.1874,
|
178 |
+
"step": 23
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.22410271374379925,
|
182 |
+
"grad_norm": 0.07720457793760661,
|
183 |
+
"learning_rate": 1.996606840404006e-05,
|
184 |
+
"loss": 2.0998,
|
185 |
+
"step": 24
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.23344032681645754,
|
189 |
+
"grad_norm": 0.07639897047393754,
|
190 |
+
"learning_rate": 1.9957061778920703e-05,
|
191 |
+
"loss": 2.0469,
|
192 |
+
"step": 25
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.24277793988911583,
|
196 |
+
"grad_norm": 0.07016046755367683,
|
197 |
+
"learning_rate": 1.9946998756145894e-05,
|
198 |
+
"loss": 1.9562,
|
199 |
+
"step": 26
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.2521155529617741,
|
203 |
+
"grad_norm": 0.06084064670530258,
|
204 |
+
"learning_rate": 1.9935880403355255e-05,
|
205 |
+
"loss": 1.8943,
|
206 |
+
"step": 27
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.26145316603443247,
|
210 |
+
"grad_norm": 0.05530834717342951,
|
211 |
+
"learning_rate": 1.9923707900153984e-05,
|
212 |
+
"loss": 1.7771,
|
213 |
+
"step": 28
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.27079077910709076,
|
217 |
+
"grad_norm": 0.05296398833585214,
|
218 |
+
"learning_rate": 1.9910482537987704e-05,
|
219 |
+
"loss": 1.7624,
|
220 |
+
"step": 29
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 0.28012839217974905,
|
224 |
+
"grad_norm": 0.05206178996458072,
|
225 |
+
"learning_rate": 1.989620572000544e-05,
|
226 |
+
"loss": 1.6848,
|
227 |
+
"step": 30
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 0.28946600525240734,
|
231 |
+
"grad_norm": 0.050431830710485716,
|
232 |
+
"learning_rate": 1.9880878960910772e-05,
|
233 |
+
"loss": 1.6577,
|
234 |
+
"step": 31
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.29880361832506563,
|
238 |
+
"grad_norm": 0.04760195929852826,
|
239 |
+
"learning_rate": 1.9864503886801108e-05,
|
240 |
+
"loss": 1.6128,
|
241 |
+
"step": 32
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.308141231397724,
|
245 |
+
"grad_norm": 0.04482797539629353,
|
246 |
+
"learning_rate": 1.9847082234995172e-05,
|
247 |
+
"loss": 1.5791,
|
248 |
+
"step": 33
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.31747884447038227,
|
252 |
+
"grad_norm": 0.04130893521590142,
|
253 |
+
"learning_rate": 1.982861585384869e-05,
|
254 |
+
"loss": 1.5063,
|
255 |
+
"step": 34
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.32681645754304056,
|
259 |
+
"grad_norm": 0.04057758728502848,
|
260 |
+
"learning_rate": 1.9809106702558277e-05,
|
261 |
+
"loss": 1.4877,
|
262 |
+
"step": 35
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"epoch": 0.33615407061569885,
|
266 |
+
"grad_norm": 0.038180219331760724,
|
267 |
+
"learning_rate": 1.978855685095358e-05,
|
268 |
+
"loss": 1.4397,
|
269 |
+
"step": 36
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.33615407061569885,
|
273 |
+
"eval_loss": 1.3349355459213257,
|
274 |
+
"eval_runtime": 16.413,
|
275 |
+
"eval_samples_per_second": 16.816,
|
276 |
+
"eval_steps_per_second": 2.132,
|
277 |
+
"step": 36
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"epoch": 0.34549168368835714,
|
281 |
+
"grad_norm": 0.0360323358530499,
|
282 |
+
"learning_rate": 1.9766968479277684e-05,
|
283 |
+
"loss": 1.3977,
|
284 |
+
"step": 37
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 0.3548292967610155,
|
288 |
+
"grad_norm": 0.035146043601200425,
|
289 |
+
"learning_rate": 1.974434387795579e-05,
|
290 |
+
"loss": 1.418,
|
291 |
+
"step": 38
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.3641669098336738,
|
295 |
+
"grad_norm": 0.033121913235728655,
|
296 |
+
"learning_rate": 1.972068544735221e-05,
|
297 |
+
"loss": 1.3359,
|
298 |
+
"step": 39
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"epoch": 0.37350452290633207,
|
302 |
+
"grad_norm": 0.031036722451915032,
|
303 |
+
"learning_rate": 1.969599569751571e-05,
|
304 |
+
"loss": 1.3401,
|
305 |
+
"step": 40
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 0.38284213597899036,
|
309 |
+
"grad_norm": 0.030669047831503912,
|
310 |
+
"learning_rate": 1.9670277247913205e-05,
|
311 |
+
"loss": 1.2638,
|
312 |
+
"step": 41
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"epoch": 0.39217974905164865,
|
316 |
+
"grad_norm": 0.03002785386211285,
|
317 |
+
"learning_rate": 1.964353282715183e-05,
|
318 |
+
"loss": 1.2649,
|
319 |
+
"step": 42
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"epoch": 0.401517362124307,
|
323 |
+
"grad_norm": 0.02817025139456513,
|
324 |
+
"learning_rate": 1.961576527268946e-05,
|
325 |
+
"loss": 1.2476,
|
326 |
+
"step": 43
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 0.4108549751969653,
|
330 |
+
"grad_norm": 0.03110381051330927,
|
331 |
+
"learning_rate": 1.9586977530533677e-05,
|
332 |
+
"loss": 1.1923,
|
333 |
+
"step": 44
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.4201925882696236,
|
337 |
+
"grad_norm": 0.031162812150372473,
|
338 |
+
"learning_rate": 1.95571726549292e-05,
|
339 |
+
"loss": 1.2044,
|
340 |
+
"step": 45
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"epoch": 0.42953020134228187,
|
344 |
+
"grad_norm": 0.029584239693380046,
|
345 |
+
"learning_rate": 1.9526353808033827e-05,
|
346 |
+
"loss": 1.1764,
|
347 |
+
"step": 46
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"epoch": 0.43886781441494016,
|
351 |
+
"grad_norm": 0.027540684267770742,
|
352 |
+
"learning_rate": 1.9494524259582994e-05,
|
353 |
+
"loss": 1.1634,
|
354 |
+
"step": 47
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 0.4482054274875985,
|
358 |
+
"grad_norm": 0.028821860863637565,
|
359 |
+
"learning_rate": 1.9461687386542826e-05,
|
360 |
+
"loss": 1.1426,
|
361 |
+
"step": 48
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 0.4575430405602568,
|
365 |
+
"grad_norm": 0.027945951918964533,
|
366 |
+
"learning_rate": 1.9427846672751873e-05,
|
367 |
+
"loss": 1.1154,
|
368 |
+
"step": 49
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 0.4668806536329151,
|
372 |
+
"grad_norm": 0.026881160663849425,
|
373 |
+
"learning_rate": 1.93930057085515e-05,
|
374 |
+
"loss": 1.0981,
|
375 |
+
"step": 50
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 0.4762182667055734,
|
379 |
+
"grad_norm": 0.025002230522002903,
|
380 |
+
"learning_rate": 1.9357168190404937e-05,
|
381 |
+
"loss": 1.0873,
|
382 |
+
"step": 51
|
383 |
+
},
|
384 |
+
{
|
385 |
+
"epoch": 0.48555587977823167,
|
386 |
+
"grad_norm": 0.02318894097448886,
|
387 |
+
"learning_rate": 1.932033792050515e-05,
|
388 |
+
"loss": 1.0701,
|
389 |
+
"step": 52
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 0.49489349285089,
|
393 |
+
"grad_norm": 0.021872991266037325,
|
394 |
+
"learning_rate": 1.928251880637141e-05,
|
395 |
+
"loss": 1.0439,
|
396 |
+
"step": 53
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"epoch": 0.5042311059235483,
|
400 |
+
"grad_norm": 0.021369213964442125,
|
401 |
+
"learning_rate": 1.924371486043473e-05,
|
402 |
+
"loss": 1.062,
|
403 |
+
"step": 54
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"epoch": 0.5135687189962066,
|
407 |
+
"grad_norm": 0.02074830989778219,
|
408 |
+
"learning_rate": 1.920393019961217e-05,
|
409 |
+
"loss": 1.0392,
|
410 |
+
"step": 55
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 0.5229063320688649,
|
414 |
+
"grad_norm": 0.020345018132100934,
|
415 |
+
"learning_rate": 1.916316904487005e-05,
|
416 |
+
"loss": 1.02,
|
417 |
+
"step": 56
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.5322439451415232,
|
421 |
+
"grad_norm": 0.01970957719141645,
|
422 |
+
"learning_rate": 1.9121435720776122e-05,
|
423 |
+
"loss": 0.9923,
|
424 |
+
"step": 57
|
425 |
+
},
|
426 |
+
{
|
427 |
+
"epoch": 0.5415815582141815,
|
428 |
+
"grad_norm": 0.019741562276937644,
|
429 |
+
"learning_rate": 1.9078734655040763e-05,
|
430 |
+
"loss": 0.9993,
|
431 |
+
"step": 58
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 0.5509191712868398,
|
435 |
+
"grad_norm": 0.0195142739708107,
|
436 |
+
"learning_rate": 1.9035070378047204e-05,
|
437 |
+
"loss": 0.9943,
|
438 |
+
"step": 59
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"epoch": 0.5602567843594981,
|
442 |
+
"grad_norm": 0.017297498916208055,
|
443 |
+
"learning_rate": 1.8990447522370886e-05,
|
444 |
+
"loss": 0.9753,
|
445 |
+
"step": 60
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"epoch": 0.5695943974321565,
|
449 |
+
"grad_norm": 0.01658779952035472,
|
450 |
+
"learning_rate": 1.8944870822287957e-05,
|
451 |
+
"loss": 0.9883,
|
452 |
+
"step": 61
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 0.5789320105048147,
|
456 |
+
"grad_norm": 0.018530815854782102,
|
457 |
+
"learning_rate": 1.8898345113273e-05,
|
458 |
+
"loss": 0.9482,
|
459 |
+
"step": 62
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.588269623577473,
|
463 |
+
"grad_norm": 0.017748842064851857,
|
464 |
+
"learning_rate": 1.8850875331485996e-05,
|
465 |
+
"loss": 0.9533,
|
466 |
+
"step": 63
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 0.5976072366501313,
|
470 |
+
"grad_norm": 0.016871546397150952,
|
471 |
+
"learning_rate": 1.8802466513248635e-05,
|
472 |
+
"loss": 0.948,
|
473 |
+
"step": 64
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"epoch": 0.6069448497227896,
|
477 |
+
"grad_norm": 0.01608669807726683,
|
478 |
+
"learning_rate": 1.8753123794509974e-05,
|
479 |
+
"loss": 0.9295,
|
480 |
+
"step": 65
|
481 |
+
},
|
482 |
+
{
|
483 |
+
"epoch": 0.616282462795448,
|
484 |
+
"grad_norm": 0.017453769141315367,
|
485 |
+
"learning_rate": 1.8702852410301556e-05,
|
486 |
+
"loss": 0.9198,
|
487 |
+
"step": 66
|
488 |
+
},
|
489 |
+
{
|
490 |
+
"epoch": 0.6256200758681062,
|
491 |
+
"grad_norm": 0.017655286026566987,
|
492 |
+
"learning_rate": 1.865165769418196e-05,
|
493 |
+
"loss": 0.9535,
|
494 |
+
"step": 67
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 0.6349576889407645,
|
498 |
+
"grad_norm": 0.017498254303415152,
|
499 |
+
"learning_rate": 1.8599545077670983e-05,
|
500 |
+
"loss": 0.9278,
|
501 |
+
"step": 68
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 0.6442953020134228,
|
505 |
+
"grad_norm": 0.01573094552466445,
|
506 |
+
"learning_rate": 1.854652008967335e-05,
|
507 |
+
"loss": 0.912,
|
508 |
+
"step": 69
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"epoch": 0.6536329150860811,
|
512 |
+
"grad_norm": 0.015035283908585596,
|
513 |
+
"learning_rate": 1.8492588355892125e-05,
|
514 |
+
"loss": 0.9182,
|
515 |
+
"step": 70
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"epoch": 0.6629705281587395,
|
519 |
+
"grad_norm": 0.01593275185300073,
|
520 |
+
"learning_rate": 1.8437755598231857e-05,
|
521 |
+
"loss": 0.9109,
|
522 |
+
"step": 71
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"epoch": 0.6723081412313977,
|
526 |
+
"grad_norm": 0.014842299347889509,
|
527 |
+
"learning_rate": 1.8382027634191523e-05,
|
528 |
+
"loss": 0.8795,
|
529 |
+
"step": 72
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"epoch": 0.6723081412313977,
|
533 |
+
"eval_loss": 0.8388988375663757,
|
534 |
+
"eval_runtime": 16.5273,
|
535 |
+
"eval_samples_per_second": 16.7,
|
536 |
+
"eval_steps_per_second": 2.118,
|
537 |
+
"step": 72
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 0.681645754304056,
|
541 |
+
"grad_norm": 0.015086756882680958,
|
542 |
+
"learning_rate": 1.8325410376247295e-05,
|
543 |
+
"loss": 0.8793,
|
544 |
+
"step": 73
|
545 |
+
},
|
546 |
+
{
|
547 |
+
"epoch": 0.6909833673767143,
|
548 |
+
"grad_norm": 0.014400642274755383,
|
549 |
+
"learning_rate": 1.826790983122527e-05,
|
550 |
+
"loss": 0.9139,
|
551 |
+
"step": 74
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"epoch": 0.7003209804493726,
|
555 |
+
"grad_norm": 0.013490998034899438,
|
556 |
+
"learning_rate": 1.8209532099664177e-05,
|
557 |
+
"loss": 0.8767,
|
558 |
+
"step": 75
|
559 |
+
},
|
560 |
+
{
|
561 |
+
"epoch": 0.709658593522031,
|
562 |
+
"grad_norm": 0.011444201595399665,
|
563 |
+
"learning_rate": 1.8150283375168112e-05,
|
564 |
+
"loss": 0.8525,
|
565 |
+
"step": 76
|
566 |
+
},
|
567 |
+
{
|
568 |
+
"epoch": 0.7189962065946892,
|
569 |
+
"grad_norm": 0.01133323463508391,
|
570 |
+
"learning_rate": 1.8090169943749477e-05,
|
571 |
+
"loss": 0.8658,
|
572 |
+
"step": 77
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 0.7283338196673476,
|
576 |
+
"grad_norm": 0.011984830212373445,
|
577 |
+
"learning_rate": 1.8029198183162e-05,
|
578 |
+
"loss": 0.856,
|
579 |
+
"step": 78
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 0.7376714327400058,
|
583 |
+
"grad_norm": 0.01217011221195066,
|
584 |
+
"learning_rate": 1.796737456222413e-05,
|
585 |
+
"loss": 0.8892,
|
586 |
+
"step": 79
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 0.7470090458126641,
|
590 |
+
"grad_norm": 0.012510369655517745,
|
591 |
+
"learning_rate": 1.7904705640132717e-05,
|
592 |
+
"loss": 0.8562,
|
593 |
+
"step": 80
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"epoch": 0.7563466588853225,
|
597 |
+
"grad_norm": 0.011806935544189488,
|
598 |
+
"learning_rate": 1.7841198065767107e-05,
|
599 |
+
"loss": 0.8644,
|
600 |
+
"step": 81
|
601 |
+
},
|
602 |
+
{
|
603 |
+
"epoch": 0.7656842719579807,
|
604 |
+
"grad_norm": 0.011433541340869584,
|
605 |
+
"learning_rate": 1.7776858576983713e-05,
|
606 |
+
"loss": 0.8692,
|
607 |
+
"step": 82
|
608 |
+
},
|
609 |
+
{
|
610 |
+
"epoch": 0.7750218850306391,
|
611 |
+
"grad_norm": 0.012566348663586087,
|
612 |
+
"learning_rate": 1.771169399990119e-05,
|
613 |
+
"loss": 0.8541,
|
614 |
+
"step": 83
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 0.7843594981032973,
|
618 |
+
"grad_norm": 0.01072107470914378,
|
619 |
+
"learning_rate": 1.7645711248176198e-05,
|
620 |
+
"loss": 0.8403,
|
621 |
+
"step": 84
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 0.7936971111759556,
|
625 |
+
"grad_norm": 0.010617575681982286,
|
626 |
+
"learning_rate": 1.7578917322269885e-05,
|
627 |
+
"loss": 0.81,
|
628 |
+
"step": 85
|
629 |
+
},
|
630 |
+
{
|
631 |
+
"epoch": 0.803034724248614,
|
632 |
+
"grad_norm": 0.010466741230697605,
|
633 |
+
"learning_rate": 1.7511319308705198e-05,
|
634 |
+
"loss": 0.8253,
|
635 |
+
"step": 86
|
636 |
+
},
|
637 |
+
{
|
638 |
+
"epoch": 0.8123723373212722,
|
639 |
+
"grad_norm": 0.010184306281966645,
|
640 |
+
"learning_rate": 1.744292437931502e-05,
|
641 |
+
"loss": 0.8526,
|
642 |
+
"step": 87
|
643 |
+
},
|
644 |
+
{
|
645 |
+
"epoch": 0.8217099503939306,
|
646 |
+
"grad_norm": 0.009850665553519504,
|
647 |
+
"learning_rate": 1.7373739790481263e-05,
|
648 |
+
"loss": 0.8304,
|
649 |
+
"step": 88
|
650 |
+
},
|
651 |
+
{
|
652 |
+
"epoch": 0.8310475634665888,
|
653 |
+
"grad_norm": 0.009236577038055978,
|
654 |
+
"learning_rate": 1.7303772882365018e-05,
|
655 |
+
"loss": 0.7908,
|
656 |
+
"step": 89
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 0.8403851765392472,
|
660 |
+
"grad_norm": 0.03711865800548727,
|
661 |
+
"learning_rate": 1.723303107812779e-05,
|
662 |
+
"loss": 0.8085,
|
663 |
+
"step": 90
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 0.8497227896119055,
|
667 |
+
"grad_norm": 0.010517236470326855,
|
668 |
+
"learning_rate": 1.7161521883143936e-05,
|
669 |
+
"loss": 0.8313,
|
670 |
+
"step": 91
|
671 |
+
},
|
672 |
+
{
|
673 |
+
"epoch": 0.8590604026845637,
|
674 |
+
"grad_norm": 0.011238580368575812,
|
675 |
+
"learning_rate": 1.7089252884204376e-05,
|
676 |
+
"loss": 0.814,
|
677 |
+
"step": 92
|
678 |
+
},
|
679 |
+
{
|
680 |
+
"epoch": 0.8683980157572221,
|
681 |
+
"grad_norm": 0.009935862606933948,
|
682 |
+
"learning_rate": 1.701623174871168e-05,
|
683 |
+
"loss": 0.8032,
|
684 |
+
"step": 93
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 0.8777356288298803,
|
688 |
+
"grad_norm": 0.009655128505771573,
|
689 |
+
"learning_rate": 1.6942466223866582e-05,
|
690 |
+
"loss": 0.8013,
|
691 |
+
"step": 94
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 0.8870732419025387,
|
695 |
+
"grad_norm": 0.010463930618313586,
|
696 |
+
"learning_rate": 1.6867964135846043e-05,
|
697 |
+
"loss": 0.8116,
|
698 |
+
"step": 95
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 0.896410854975197,
|
702 |
+
"grad_norm": 0.009360797680160574,
|
703 |
+
"learning_rate": 1.679273338897293e-05,
|
704 |
+
"loss": 0.8064,
|
705 |
+
"step": 96
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"epoch": 0.9057484680478552,
|
709 |
+
"grad_norm": 0.00968251573081083,
|
710 |
+
"learning_rate": 1.6716781964877413e-05,
|
711 |
+
"loss": 0.8208,
|
712 |
+
"step": 97
|
713 |
+
},
|
714 |
+
{
|
715 |
+
"epoch": 0.9150860811205136,
|
716 |
+
"grad_norm": 0.009894122849502883,
|
717 |
+
"learning_rate": 1.664011792165012e-05,
|
718 |
+
"loss": 0.8042,
|
719 |
+
"step": 98
|
720 |
+
},
|
721 |
+
{
|
722 |
+
"epoch": 0.9244236941931718,
|
723 |
+
"grad_norm": 0.010626027391586145,
|
724 |
+
"learning_rate": 1.6562749392987255e-05,
|
725 |
+
"loss": 0.8037,
|
726 |
+
"step": 99
|
727 |
+
},
|
728 |
+
{
|
729 |
+
"epoch": 0.9337613072658302,
|
730 |
+
"grad_norm": 0.01083144628829605,
|
731 |
+
"learning_rate": 1.648468458732762e-05,
|
732 |
+
"loss": 0.8079,
|
733 |
+
"step": 100
|
734 |
+
},
|
735 |
+
{
|
736 |
+
"epoch": 0.9430989203384885,
|
737 |
+
"grad_norm": 0.012651590456989211,
|
738 |
+
"learning_rate": 1.6405931786981753e-05,
|
739 |
+
"loss": 0.7903,
|
740 |
+
"step": 101
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 0.9524365334111468,
|
744 |
+
"grad_norm": 0.010619166674062264,
|
745 |
+
"learning_rate": 1.6326499347253206e-05,
|
746 |
+
"loss": 0.7783,
|
747 |
+
"step": 102
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"epoch": 0.9617741464838051,
|
751 |
+
"grad_norm": 0.009320303165881526,
|
752 |
+
"learning_rate": 1.6246395695552086e-05,
|
753 |
+
"loss": 0.8035,
|
754 |
+
"step": 103
|
755 |
+
},
|
756 |
+
{
|
757 |
+
"epoch": 0.9711117595564633,
|
758 |
+
"grad_norm": 0.009094019045947338,
|
759 |
+
"learning_rate": 1.6165629330500952e-05,
|
760 |
+
"loss": 0.7839,
|
761 |
+
"step": 104
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"epoch": 0.9804493726291217,
|
765 |
+
"grad_norm": 0.009044004451355656,
|
766 |
+
"learning_rate": 1.6084208821033152e-05,
|
767 |
+
"loss": 0.7641,
|
768 |
+
"step": 105
|
769 |
+
},
|
770 |
+
{
|
771 |
+
"epoch": 0.98978698570178,
|
772 |
+
"grad_norm": 0.009202270165387296,
|
773 |
+
"learning_rate": 1.6002142805483686e-05,
|
774 |
+
"loss": 0.7666,
|
775 |
+
"step": 106
|
776 |
+
},
|
777 |
+
{
|
778 |
+
"epoch": 0.9991245987744383,
|
779 |
+
"grad_norm": 0.009577150303950122,
|
780 |
+
"learning_rate": 1.591943999067273e-05,
|
781 |
+
"loss": 0.7869,
|
782 |
+
"step": 107
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"epoch": 1.0,
|
786 |
+
"grad_norm": 0.009577150303950122,
|
787 |
+
"learning_rate": 1.5836109150981885e-05,
|
788 |
+
"loss": 0.7726,
|
789 |
+
"step": 108
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 1.0,
|
793 |
+
"eval_loss": 0.729849100112915,
|
794 |
+
"eval_runtime": 16.4211,
|
795 |
+
"eval_samples_per_second": 16.808,
|
796 |
+
"eval_steps_per_second": 2.131,
|
797 |
+
"step": 108
|
798 |
+
},
|
799 |
+
{
|
800 |
+
"epoch": 1.0093376130726583,
|
801 |
+
"grad_norm": 0.025397375893953918,
|
802 |
+
"learning_rate": 1.5752159127423262e-05,
|
803 |
+
"loss": 0.7934,
|
804 |
+
"step": 109
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 1.0186752261453167,
|
808 |
+
"grad_norm": 0.010902737901808093,
|
809 |
+
"learning_rate": 1.5667598826701463e-05,
|
810 |
+
"loss": 0.7627,
|
811 |
+
"step": 110
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 1.0280128392179748,
|
815 |
+
"grad_norm": 0.010800327585788388,
|
816 |
+
"learning_rate": 1.5582437220268648e-05,
|
817 |
+
"loss": 0.7578,
|
818 |
+
"step": 111
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 1.0373504522906332,
|
822 |
+
"grad_norm": 0.009732201305595227,
|
823 |
+
"learning_rate": 1.549668334337271e-05,
|
824 |
+
"loss": 0.7786,
|
825 |
+
"step": 112
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"epoch": 1.0466880653632915,
|
829 |
+
"grad_norm": 0.009646638742060199,
|
830 |
+
"learning_rate": 1.541034629409865e-05,
|
831 |
+
"loss": 0.7867,
|
832 |
+
"step": 113
|
833 |
+
},
|
834 |
+
{
|
835 |
+
"epoch": 1.0560256784359499,
|
836 |
+
"grad_norm": 0.008481219102834343,
|
837 |
+
"learning_rate": 1.532343523240334e-05,
|
838 |
+
"loss": 0.7728,
|
839 |
+
"step": 114
|
840 |
+
},
|
841 |
+
{
|
842 |
+
"epoch": 1.0653632915086082,
|
843 |
+
"grad_norm": 0.007896528546841378,
|
844 |
+
"learning_rate": 1.523595937914368e-05,
|
845 |
+
"loss": 0.7478,
|
846 |
+
"step": 115
|
847 |
+
},
|
848 |
+
{
|
849 |
+
"epoch": 1.0747009045812663,
|
850 |
+
"grad_norm": 0.008638298804510322,
|
851 |
+
"learning_rate": 1.5147928015098309e-05,
|
852 |
+
"loss": 0.7479,
|
853 |
+
"step": 116
|
854 |
+
},
|
855 |
+
{
|
856 |
+
"epoch": 1.0840385176539247,
|
857 |
+
"grad_norm": 0.009113972298077106,
|
858 |
+
"learning_rate": 1.5059350479982966e-05,
|
859 |
+
"loss": 0.765,
|
860 |
+
"step": 117
|
861 |
+
},
|
862 |
+
{
|
863 |
+
"epoch": 1.093376130726583,
|
864 |
+
"grad_norm": 0.007570635714068737,
|
865 |
+
"learning_rate": 1.497023617145958e-05,
|
866 |
+
"loss": 0.7401,
|
867 |
+
"step": 118
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"epoch": 1.1027137437992414,
|
871 |
+
"grad_norm": 0.007964839741138431,
|
872 |
+
"learning_rate": 1.488059454413923e-05,
|
873 |
+
"loss": 0.7397,
|
874 |
+
"step": 119
|
875 |
+
},
|
876 |
+
{
|
877 |
+
"epoch": 1.1120513568718997,
|
878 |
+
"grad_norm": 0.008981954045478064,
|
879 |
+
"learning_rate": 1.4790435108579048e-05,
|
880 |
+
"loss": 0.7497,
|
881 |
+
"step": 120
|
882 |
+
},
|
883 |
+
{
|
884 |
+
"epoch": 1.1213889699445578,
|
885 |
+
"grad_norm": 0.010253710038366608,
|
886 |
+
"learning_rate": 1.4699767430273202e-05,
|
887 |
+
"loss": 0.747,
|
888 |
+
"step": 121
|
889 |
+
},
|
890 |
+
{
|
891 |
+
"epoch": 1.1307265830172162,
|
892 |
+
"grad_norm": 0.009127204104812056,
|
893 |
+
"learning_rate": 1.4608601128638027e-05,
|
894 |
+
"loss": 0.7288,
|
895 |
+
"step": 122
|
896 |
+
},
|
897 |
+
{
|
898 |
+
"epoch": 1.1400641960898745,
|
899 |
+
"grad_norm": 0.008391872101434881,
|
900 |
+
"learning_rate": 1.4516945875991472e-05,
|
901 |
+
"loss": 0.7509,
|
902 |
+
"step": 123
|
903 |
+
},
|
904 |
+
{
|
905 |
+
"epoch": 1.1494018091625329,
|
906 |
+
"grad_norm": 0.007969062908818022,
|
907 |
+
"learning_rate": 1.4424811396526892e-05,
|
908 |
+
"loss": 0.7475,
|
909 |
+
"step": 124
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 1.1587394222351912,
|
913 |
+
"grad_norm": 0.011220499027460716,
|
914 |
+
"learning_rate": 1.4332207465281365e-05,
|
915 |
+
"loss": 0.7553,
|
916 |
+
"step": 125
|
917 |
+
},
|
918 |
+
{
|
919 |
+
"epoch": 1.1680770353078493,
|
920 |
+
"grad_norm": 0.008438223962809686,
|
921 |
+
"learning_rate": 1.423914390709861e-05,
|
922 |
+
"loss": 0.7417,
|
923 |
+
"step": 126
|
924 |
+
},
|
925 |
+
{
|
926 |
+
"epoch": 1.1774146483805077,
|
927 |
+
"grad_norm": 0.008124062455599669,
|
928 |
+
"learning_rate": 1.4145630595586607e-05,
|
929 |
+
"loss": 0.7315,
|
930 |
+
"step": 127
|
931 |
+
},
|
932 |
+
{
|
933 |
+
"epoch": 1.186752261453166,
|
934 |
+
"grad_norm": 0.008212207725829243,
|
935 |
+
"learning_rate": 1.4051677452070064e-05,
|
936 |
+
"loss": 0.7358,
|
937 |
+
"step": 128
|
938 |
+
},
|
939 |
+
{
|
940 |
+
"epoch": 1.1960898745258244,
|
941 |
+
"grad_norm": 0.007992807301141594,
|
942 |
+
"learning_rate": 1.3957294444537808e-05,
|
943 |
+
"loss": 0.7211,
|
944 |
+
"step": 129
|
945 |
+
},
|
946 |
+
{
|
947 |
+
"epoch": 1.2054274875984827,
|
948 |
+
"grad_norm": 0.006862436811624155,
|
949 |
+
"learning_rate": 1.386249158658522e-05,
|
950 |
+
"loss": 0.7328,
|
951 |
+
"step": 130
|
952 |
+
},
|
953 |
+
{
|
954 |
+
"epoch": 1.2147651006711409,
|
955 |
+
"grad_norm": 0.007484363453260225,
|
956 |
+
"learning_rate": 1.3767278936351853e-05,
|
957 |
+
"loss": 0.7409,
|
958 |
+
"step": 131
|
959 |
+
},
|
960 |
+
{
|
961 |
+
"epoch": 1.2241027137437992,
|
962 |
+
"grad_norm": 0.0076572272628448925,
|
963 |
+
"learning_rate": 1.3671666595454296e-05,
|
964 |
+
"loss": 0.7486,
|
965 |
+
"step": 132
|
966 |
+
},
|
967 |
+
{
|
968 |
+
"epoch": 1.2334403268164575,
|
969 |
+
"grad_norm": 0.008131184001251386,
|
970 |
+
"learning_rate": 1.357566470791445e-05,
|
971 |
+
"loss": 0.7376,
|
972 |
+
"step": 133
|
973 |
+
},
|
974 |
+
{
|
975 |
+
"epoch": 1.242777939889116,
|
976 |
+
"grad_norm": 0.008560166789615074,
|
977 |
+
"learning_rate": 1.347928345908329e-05,
|
978 |
+
"loss": 0.7506,
|
979 |
+
"step": 134
|
980 |
+
},
|
981 |
+
{
|
982 |
+
"epoch": 1.252115552961774,
|
983 |
+
"grad_norm": 0.007528447805555166,
|
984 |
+
"learning_rate": 1.3382533074560256e-05,
|
985 |
+
"loss": 0.7376,
|
986 |
+
"step": 135
|
987 |
+
},
|
988 |
+
{
|
989 |
+
"epoch": 1.2614531660344324,
|
990 |
+
"grad_norm": 0.007242664476183943,
|
991 |
+
"learning_rate": 1.3285423819108349e-05,
|
992 |
+
"loss": 0.7294,
|
993 |
+
"step": 136
|
994 |
+
},
|
995 |
+
{
|
996 |
+
"epoch": 1.2707907791070907,
|
997 |
+
"grad_norm": 0.007533824122445911,
|
998 |
+
"learning_rate": 1.3187965995565098e-05,
|
999 |
+
"loss": 0.7266,
|
1000 |
+
"step": 137
|
1001 |
+
},
|
1002 |
+
{
|
1003 |
+
"epoch": 1.280128392179749,
|
1004 |
+
"grad_norm": 0.007327965197210789,
|
1005 |
+
"learning_rate": 1.3090169943749475e-05,
|
1006 |
+
"loss": 0.7303,
|
1007 |
+
"step": 138
|
1008 |
+
},
|
1009 |
+
{
|
1010 |
+
"epoch": 1.2894660052524074,
|
1011 |
+
"grad_norm": 0.006703326795271757,
|
1012 |
+
"learning_rate": 1.2992046039364893e-05,
|
1013 |
+
"loss": 0.7157,
|
1014 |
+
"step": 139
|
1015 |
+
},
|
1016 |
+
{
|
1017 |
+
"epoch": 1.2988036183250657,
|
1018 |
+
"grad_norm": 0.006779822330163705,
|
1019 |
+
"learning_rate": 1.2893604692898381e-05,
|
1020 |
+
"loss": 0.7244,
|
1021 |
+
"step": 140
|
1022 |
+
},
|
1023 |
+
{
|
1024 |
+
"epoch": 1.308141231397724,
|
1025 |
+
"grad_norm": 0.006809286300573549,
|
1026 |
+
"learning_rate": 1.2794856348516095e-05,
|
1027 |
+
"loss": 0.738,
|
1028 |
+
"step": 141
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"epoch": 1.3174788444703822,
|
1032 |
+
"grad_norm": 0.006995815937146753,
|
1033 |
+
"learning_rate": 1.2695811482955227e-05,
|
1034 |
+
"loss": 0.7257,
|
1035 |
+
"step": 142
|
1036 |
+
},
|
1037 |
+
{
|
1038 |
+
"epoch": 1.3268164575430406,
|
1039 |
+
"grad_norm": 0.007022225511576764,
|
1040 |
+
"learning_rate": 1.2596480604412485e-05,
|
1041 |
+
"loss": 0.7344,
|
1042 |
+
"step": 143
|
1043 |
+
},
|
1044 |
+
{
|
1045 |
+
"epoch": 1.336154070615699,
|
1046 |
+
"grad_norm": 0.006750693986284064,
|
1047 |
+
"learning_rate": 1.24968742514292e-05,
|
1048 |
+
"loss": 0.7374,
|
1049 |
+
"step": 144
|
1050 |
+
},
|
1051 |
+
{
|
1052 |
+
"epoch": 1.336154070615699,
|
1053 |
+
"eval_loss": 0.6810739636421204,
|
1054 |
+
"eval_runtime": 16.3456,
|
1055 |
+
"eval_samples_per_second": 16.885,
|
1056 |
+
"eval_steps_per_second": 2.141,
|
1057 |
+
"step": 144
|
1058 |
+
},
|
1059 |
+
{
|
1060 |
+
"epoch": 1.345491683688357,
|
1061 |
+
"grad_norm": 0.00747295934805212,
|
1062 |
+
"learning_rate": 1.2397002991773277e-05,
|
1063 |
+
"loss": 0.7236,
|
1064 |
+
"step": 145
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"epoch": 1.3548292967610154,
|
1068 |
+
"grad_norm": 0.006404283125929898,
|
1069 |
+
"learning_rate": 1.2296877421317958e-05,
|
1070 |
+
"loss": 0.7047,
|
1071 |
+
"step": 146
|
1072 |
+
},
|
1073 |
+
{
|
1074 |
+
"epoch": 1.3641669098336737,
|
1075 |
+
"grad_norm": 0.007306315558814404,
|
1076 |
+
"learning_rate": 1.2196508162917678e-05,
|
1077 |
+
"loss": 0.7195,
|
1078 |
+
"step": 147
|
1079 |
+
},
|
1080 |
+
{
|
1081 |
+
"epoch": 1.373504522906332,
|
1082 |
+
"grad_norm": 0.007020070609447835,
|
1083 |
+
"learning_rate": 1.2095905865281026e-05,
|
1084 |
+
"loss": 0.7154,
|
1085 |
+
"step": 148
|
1086 |
+
},
|
1087 |
+
{
|
1088 |
+
"epoch": 1.3828421359789904,
|
1089 |
+
"grad_norm": 0.007513917861345975,
|
1090 |
+
"learning_rate": 1.1995081201840958e-05,
|
1091 |
+
"loss": 0.7175,
|
1092 |
+
"step": 149
|
1093 |
+
},
|
1094 |
+
{
|
1095 |
+
"epoch": 1.3921797490516488,
|
1096 |
+
"grad_norm": 0.006157056101055128,
|
1097 |
+
"learning_rate": 1.1894044869622403e-05,
|
1098 |
+
"loss": 0.711,
|
1099 |
+
"step": 150
|
1100 |
+
},
|
1101 |
+
{
|
1102 |
+
"epoch": 1.401517362124307,
|
1103 |
+
"grad_norm": 0.006769156388392959,
|
1104 |
+
"learning_rate": 1.1792807588107358e-05,
|
1105 |
+
"loss": 0.7162,
|
1106 |
+
"step": 151
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"epoch": 1.4108549751969652,
|
1110 |
+
"grad_norm": 0.007625740849364638,
|
1111 |
+
"learning_rate": 1.1691380098097598e-05,
|
1112 |
+
"loss": 0.7074,
|
1113 |
+
"step": 152
|
1114 |
+
},
|
1115 |
+
{
|
1116 |
+
"epoch": 1.4201925882696236,
|
1117 |
+
"grad_norm": 0.006751113454553622,
|
1118 |
+
"learning_rate": 1.158977316057513e-05,
|
1119 |
+
"loss": 0.7139,
|
1120 |
+
"step": 153
|
1121 |
+
},
|
1122 |
+
{
|
1123 |
+
"epoch": 1.429530201342282,
|
1124 |
+
"grad_norm": 0.006999228085598098,
|
1125 |
+
"learning_rate": 1.1487997555560503e-05,
|
1126 |
+
"loss": 0.7129,
|
1127 |
+
"step": 154
|
1128 |
+
},
|
1129 |
+
{
|
1130 |
+
"epoch": 1.43886781441494,
|
1131 |
+
"grad_norm": 0.007159925361221997,
|
1132 |
+
"learning_rate": 1.1386064080969095e-05,
|
1133 |
+
"loss": 0.7198,
|
1134 |
+
"step": 155
|
1135 |
+
},
|
1136 |
+
{
|
1137 |
+
"epoch": 1.4482054274875984,
|
1138 |
+
"grad_norm": 0.006542656052835091,
|
1139 |
+
"learning_rate": 1.1283983551465512e-05,
|
1140 |
+
"loss": 0.6975,
|
1141 |
+
"step": 156
|
1142 |
+
},
|
1143 |
+
{
|
1144 |
+
"epoch": 1.4575430405602567,
|
1145 |
+
"grad_norm": 0.007362347745191795,
|
1146 |
+
"learning_rate": 1.118176679731619e-05,
|
1147 |
+
"loss": 0.7233,
|
1148 |
+
"step": 157
|
1149 |
+
},
|
1150 |
+
{
|
1151 |
+
"epoch": 1.466880653632915,
|
1152 |
+
"grad_norm": 0.007507454634951982,
|
1153 |
+
"learning_rate": 1.1079424663240372e-05,
|
1154 |
+
"loss": 0.7013,
|
1155 |
+
"step": 158
|
1156 |
+
},
|
1157 |
+
{
|
1158 |
+
"epoch": 1.4762182667055734,
|
1159 |
+
"grad_norm": 0.006924288571642269,
|
1160 |
+
"learning_rate": 1.0976968007259519e-05,
|
1161 |
+
"loss": 0.7169,
|
1162 |
+
"step": 159
|
1163 |
+
},
|
1164 |
+
{
|
1165 |
+
"epoch": 1.4855558797782318,
|
1166 |
+
"grad_norm": 0.007327013436583258,
|
1167 |
+
"learning_rate": 1.0874407699545329e-05,
|
1168 |
+
"loss": 0.7045,
|
1169 |
+
"step": 160
|
1170 |
+
},
|
1171 |
+
{
|
1172 |
+
"epoch": 1.4948934928508901,
|
1173 |
+
"grad_norm": 0.0067947511037762314,
|
1174 |
+
"learning_rate": 1.0771754621266466e-05,
|
1175 |
+
"loss": 0.7114,
|
1176 |
+
"step": 161
|
1177 |
+
},
|
1178 |
+
{
|
1179 |
+
"epoch": 1.5042311059235483,
|
1180 |
+
"grad_norm": 0.007479624734064453,
|
1181 |
+
"learning_rate": 1.0669019663434117e-05,
|
1182 |
+
"loss": 0.7081,
|
1183 |
+
"step": 162
|
1184 |
+
},
|
1185 |
+
{
|
1186 |
+
"epoch": 1.5135687189962066,
|
1187 |
+
"grad_norm": 0.0071184716193534595,
|
1188 |
+
"learning_rate": 1.0566213725746506e-05,
|
1189 |
+
"loss": 0.7277,
|
1190 |
+
"step": 163
|
1191 |
+
},
|
1192 |
+
{
|
1193 |
+
"epoch": 1.522906332068865,
|
1194 |
+
"grad_norm": 0.007760294512478719,
|
1195 |
+
"learning_rate": 1.0463347715432488e-05,
|
1196 |
+
"loss": 0.7196,
|
1197 |
+
"step": 164
|
1198 |
+
},
|
1199 |
+
{
|
1200 |
+
"epoch": 1.532243945141523,
|
1201 |
+
"grad_norm": 0.007716707922551307,
|
1202 |
+
"learning_rate": 1.0360432546094341e-05,
|
1203 |
+
"loss": 0.7197,
|
1204 |
+
"step": 165
|
1205 |
+
},
|
1206 |
+
{
|
1207 |
+
"epoch": 1.5415815582141814,
|
1208 |
+
"grad_norm": 0.0072311410748593635,
|
1209 |
+
"learning_rate": 1.0257479136549889e-05,
|
1210 |
+
"loss": 0.7096,
|
1211 |
+
"step": 166
|
1212 |
+
},
|
1213 |
+
{
|
1214 |
+
"epoch": 1.5509191712868398,
|
1215 |
+
"grad_norm": 0.006676953574505626,
|
1216 |
+
"learning_rate": 1.0154498409674051e-05,
|
1217 |
+
"loss": 0.6982,
|
1218 |
+
"step": 167
|
1219 |
+
},
|
1220 |
+
{
|
1221 |
+
"epoch": 1.560256784359498,
|
1222 |
+
"grad_norm": 0.006468587987533156,
|
1223 |
+
"learning_rate": 1.0051501291240008e-05,
|
1224 |
+
"loss": 0.6774,
|
1225 |
+
"step": 168
|
1226 |
+
},
|
1227 |
+
{
|
1228 |
+
"epoch": 1.5695943974321565,
|
1229 |
+
"grad_norm": 0.006253950592479604,
|
1230 |
+
"learning_rate": 9.948498708759993e-06,
|
1231 |
+
"loss": 0.688,
|
1232 |
+
"step": 169
|
1233 |
+
},
|
1234 |
+
{
|
1235 |
+
"epoch": 1.5789320105048148,
|
1236 |
+
"grad_norm": 0.0065410655967948214,
|
1237 |
+
"learning_rate": 9.845501590325949e-06,
|
1238 |
+
"loss": 0.7207,
|
1239 |
+
"step": 170
|
1240 |
+
},
|
1241 |
+
{
|
1242 |
+
"epoch": 1.5882696235774731,
|
1243 |
+
"grad_norm": 0.006364666727868252,
|
1244 |
+
"learning_rate": 9.742520863450116e-06,
|
1245 |
+
"loss": 0.7027,
|
1246 |
+
"step": 171
|
1247 |
+
},
|
1248 |
+
{
|
1249 |
+
"epoch": 1.5976072366501313,
|
1250 |
+
"grad_norm": 0.006174978009841133,
|
1251 |
+
"learning_rate": 9.639567453905662e-06,
|
1252 |
+
"loss": 0.7021,
|
1253 |
+
"step": 172
|
1254 |
+
},
|
1255 |
+
{
|
1256 |
+
"epoch": 1.6069448497227896,
|
1257 |
+
"grad_norm": 0.006819554213970836,
|
1258 |
+
"learning_rate": 9.536652284567514e-06,
|
1259 |
+
"loss": 0.6707,
|
1260 |
+
"step": 173
|
1261 |
+
},
|
1262 |
+
{
|
1263 |
+
"epoch": 1.616282462795448,
|
1264 |
+
"grad_norm": 0.006939549814926166,
|
1265 |
+
"learning_rate": 9.433786274253496e-06,
|
1266 |
+
"loss": 0.688,
|
1267 |
+
"step": 174
|
1268 |
+
},
|
1269 |
+
{
|
1270 |
+
"epoch": 1.625620075868106,
|
1271 |
+
"grad_norm": 0.006694022655954106,
|
1272 |
+
"learning_rate": 9.330980336565887e-06,
|
1273 |
+
"loss": 0.6986,
|
1274 |
+
"step": 175
|
1275 |
+
},
|
1276 |
+
{
|
1277 |
+
"epoch": 1.6349576889407644,
|
1278 |
+
"grad_norm": 0.006672750770558918,
|
1279 |
+
"learning_rate": 9.228245378733537e-06,
|
1280 |
+
"loss": 0.7094,
|
1281 |
+
"step": 176
|
1282 |
+
},
|
1283 |
+
{
|
1284 |
+
"epoch": 1.6442953020134228,
|
1285 |
+
"grad_norm": 0.007263430275454483,
|
1286 |
+
"learning_rate": 9.125592300454675e-06,
|
1287 |
+
"loss": 0.6912,
|
1288 |
+
"step": 177
|
1289 |
+
},
|
1290 |
+
{
|
1291 |
+
"epoch": 1.6536329150860811,
|
1292 |
+
"grad_norm": 0.007540180086839557,
|
1293 |
+
"learning_rate": 9.023031992740488e-06,
|
1294 |
+
"loss": 0.6792,
|
1295 |
+
"step": 178
|
1296 |
+
},
|
1297 |
+
{
|
1298 |
+
"epoch": 1.6629705281587395,
|
1299 |
+
"grad_norm": 0.0064199964583914505,
|
1300 |
+
"learning_rate": 8.92057533675963e-06,
|
1301 |
+
"loss": 0.688,
|
1302 |
+
"step": 179
|
1303 |
+
},
|
1304 |
+
{
|
1305 |
+
"epoch": 1.6723081412313978,
|
1306 |
+
"grad_norm": 0.006196992820903783,
|
1307 |
+
"learning_rate": 8.818233202683815e-06,
|
1308 |
+
"loss": 0.6928,
|
1309 |
+
"step": 180
|
1310 |
+
},
|
1311 |
+
{
|
1312 |
+
"epoch": 1.6723081412313978,
|
1313 |
+
"eval_loss": 0.6554006934165955,
|
1314 |
+
"eval_runtime": 16.766,
|
1315 |
+
"eval_samples_per_second": 16.462,
|
1316 |
+
"eval_steps_per_second": 2.088,
|
1317 |
+
"step": 180
|
1318 |
+
},
|
1319 |
+
{
|
1320 |
+
"epoch": 1.6816457543040562,
|
1321 |
+
"grad_norm": 0.006747686143721935,
|
1322 |
+
"learning_rate": 8.71601644853449e-06,
|
1323 |
+
"loss": 0.7055,
|
1324 |
+
"step": 181
|
1325 |
+
},
|
1326 |
+
{
|
1327 |
+
"epoch": 1.6909833673767143,
|
1328 |
+
"grad_norm": 0.006142383641399304,
|
1329 |
+
"learning_rate": 8.613935919030908e-06,
|
1330 |
+
"loss": 0.6897,
|
1331 |
+
"step": 182
|
1332 |
+
},
|
1333 |
+
{
|
1334 |
+
"epoch": 1.7003209804493726,
|
1335 |
+
"grad_norm": 0.005877324668671395,
|
1336 |
+
"learning_rate": 8.512002444439502e-06,
|
1337 |
+
"loss": 0.7044,
|
1338 |
+
"step": 183
|
1339 |
+
},
|
1340 |
+
{
|
1341 |
+
"epoch": 1.709658593522031,
|
1342 |
+
"grad_norm": 0.006855381402076154,
|
1343 |
+
"learning_rate": 8.410226839424871e-06,
|
1344 |
+
"loss": 0.6819,
|
1345 |
+
"step": 184
|
1346 |
+
},
|
1347 |
+
{
|
1348 |
+
"epoch": 1.718996206594689,
|
1349 |
+
"grad_norm": 0.005424415467423937,
|
1350 |
+
"learning_rate": 8.308619901902406e-06,
|
1351 |
+
"loss": 0.7078,
|
1352 |
+
"step": 185
|
1353 |
+
},
|
1354 |
+
{
|
1355 |
+
"epoch": 1.7283338196673474,
|
1356 |
+
"grad_norm": 0.0061132223152236785,
|
1357 |
+
"learning_rate": 8.207192411892645e-06,
|
1358 |
+
"loss": 0.6931,
|
1359 |
+
"step": 186
|
1360 |
+
},
|
1361 |
+
{
|
1362 |
+
"epoch": 1.7376714327400058,
|
1363 |
+
"grad_norm": 0.006419370473537233,
|
1364 |
+
"learning_rate": 8.1059551303776e-06,
|
1365 |
+
"loss": 0.7123,
|
1366 |
+
"step": 187
|
1367 |
+
},
|
1368 |
+
{
|
1369 |
+
"epoch": 1.7470090458126641,
|
1370 |
+
"grad_norm": 0.0063388625830988875,
|
1371 |
+
"learning_rate": 8.004918798159046e-06,
|
1372 |
+
"loss": 0.6867,
|
1373 |
+
"step": 188
|
1374 |
+
},
|
1375 |
+
{
|
1376 |
+
"epoch": 1.7563466588853225,
|
1377 |
+
"grad_norm": 0.0058968715521128074,
|
1378 |
+
"learning_rate": 7.904094134718975e-06,
|
1379 |
+
"loss": 0.6864,
|
1380 |
+
"step": 189
|
1381 |
+
},
|
1382 |
+
{
|
1383 |
+
"epoch": 1.7656842719579808,
|
1384 |
+
"grad_norm": 0.0064607553768266796,
|
1385 |
+
"learning_rate": 7.803491837082324e-06,
|
1386 |
+
"loss": 0.6901,
|
1387 |
+
"step": 190
|
1388 |
+
},
|
1389 |
+
{
|
1390 |
+
"epoch": 1.7750218850306392,
|
1391 |
+
"grad_norm": 0.0067065346597906346,
|
1392 |
+
"learning_rate": 7.703122578682047e-06,
|
1393 |
+
"loss": 0.7002,
|
1394 |
+
"step": 191
|
1395 |
+
},
|
1396 |
+
{
|
1397 |
+
"epoch": 1.7843594981032973,
|
1398 |
+
"grad_norm": 0.006375540418233348,
|
1399 |
+
"learning_rate": 7.602997008226725e-06,
|
1400 |
+
"loss": 0.6952,
|
1401 |
+
"step": 192
|
1402 |
+
},
|
1403 |
+
{
|
1404 |
+
"epoch": 1.7936971111759556,
|
1405 |
+
"grad_norm": 0.005964849793104097,
|
1406 |
+
"learning_rate": 7.503125748570801e-06,
|
1407 |
+
"loss": 0.7012,
|
1408 |
+
"step": 193
|
1409 |
+
},
|
1410 |
+
{
|
1411 |
+
"epoch": 1.803034724248614,
|
1412 |
+
"grad_norm": 0.006923688795252922,
|
1413 |
+
"learning_rate": 7.403519395587522e-06,
|
1414 |
+
"loss": 0.6873,
|
1415 |
+
"step": 194
|
1416 |
+
},
|
1417 |
+
{
|
1418 |
+
"epoch": 1.8123723373212721,
|
1419 |
+
"grad_norm": 0.006884309979239693,
|
1420 |
+
"learning_rate": 7.304188517044774e-06,
|
1421 |
+
"loss": 0.7075,
|
1422 |
+
"step": 195
|
1423 |
+
},
|
1424 |
+
{
|
1425 |
+
"epoch": 1.8217099503939305,
|
1426 |
+
"grad_norm": 0.006370636558687697,
|
1427 |
+
"learning_rate": 7.2051436514839064e-06,
|
1428 |
+
"loss": 0.6988,
|
1429 |
+
"step": 196
|
1430 |
+
},
|
1431 |
+
{
|
1432 |
+
"epoch": 1.8310475634665888,
|
1433 |
+
"grad_norm": 0.00628278997180673,
|
1434 |
+
"learning_rate": 7.106395307101621e-06,
|
1435 |
+
"loss": 0.6934,
|
1436 |
+
"step": 197
|
1437 |
+
},
|
1438 |
+
{
|
1439 |
+
"epoch": 1.8403851765392472,
|
1440 |
+
"grad_norm": 0.006032860815901838,
|
1441 |
+
"learning_rate": 7.007953960635109e-06,
|
1442 |
+
"loss": 0.6938,
|
1443 |
+
"step": 198
|
1444 |
+
},
|
1445 |
+
{
|
1446 |
+
"epoch": 1.8497227896119055,
|
1447 |
+
"grad_norm": 0.005962967202398698,
|
1448 |
+
"learning_rate": 6.909830056250527e-06,
|
1449 |
+
"loss": 0.6854,
|
1450 |
+
"step": 199
|
1451 |
+
},
|
1452 |
+
{
|
1453 |
+
"epoch": 1.8590604026845639,
|
1454 |
+
"grad_norm": 0.00554268821549102,
|
1455 |
+
"learning_rate": 6.812034004434904e-06,
|
1456 |
+
"loss": 0.6851,
|
1457 |
+
"step": 200
|
1458 |
+
},
|
1459 |
+
{
|
1460 |
+
"epoch": 1.8683980157572222,
|
1461 |
+
"grad_norm": 0.005725484983585548,
|
1462 |
+
"learning_rate": 6.714576180891653e-06,
|
1463 |
+
"loss": 0.6936,
|
1464 |
+
"step": 201
|
1465 |
+
},
|
1466 |
+
{
|
1467 |
+
"epoch": 1.8777356288298803,
|
1468 |
+
"grad_norm": 0.006054690781627555,
|
1469 |
+
"learning_rate": 6.617466925439746e-06,
|
1470 |
+
"loss": 0.6851,
|
1471 |
+
"step": 202
|
1472 |
+
},
|
1473 |
+
{
|
1474 |
+
"epoch": 1.8870732419025387,
|
1475 |
+
"grad_norm": 0.005708307473106662,
|
1476 |
+
"learning_rate": 6.520716540916709e-06,
|
1477 |
+
"loss": 0.678,
|
1478 |
+
"step": 203
|
1479 |
+
},
|
1480 |
+
{
|
1481 |
+
"epoch": 1.896410854975197,
|
1482 |
+
"grad_norm": 0.0059546695263407905,
|
1483 |
+
"learning_rate": 6.424335292085553e-06,
|
1484 |
+
"loss": 0.6854,
|
1485 |
+
"step": 204
|
1486 |
+
},
|
1487 |
+
{
|
1488 |
+
"epoch": 1.9057484680478551,
|
1489 |
+
"grad_norm": 0.006488681044848436,
|
1490 |
+
"learning_rate": 6.32833340454571e-06,
|
1491 |
+
"loss": 0.6796,
|
1492 |
+
"step": 205
|
1493 |
+
},
|
1494 |
+
{
|
1495 |
+
"epoch": 1.9150860811205135,
|
1496 |
+
"grad_norm": 0.006493914236731745,
|
1497 |
+
"learning_rate": 6.232721063648148e-06,
|
1498 |
+
"loss": 0.6745,
|
1499 |
+
"step": 206
|
1500 |
+
},
|
1501 |
+
{
|
1502 |
+
"epoch": 1.9244236941931718,
|
1503 |
+
"grad_norm": 0.006261095082612158,
|
1504 |
+
"learning_rate": 6.137508413414784e-06,
|
1505 |
+
"loss": 0.6925,
|
1506 |
+
"step": 207
|
1507 |
+
},
|
1508 |
+
{
|
1509 |
+
"epoch": 1.9337613072658302,
|
1510 |
+
"grad_norm": 0.00619237862435736,
|
1511 |
+
"learning_rate": 6.042705555462192e-06,
|
1512 |
+
"loss": 0.693,
|
1513 |
+
"step": 208
|
1514 |
+
},
|
1515 |
+
{
|
1516 |
+
"epoch": 1.9430989203384885,
|
1517 |
+
"grad_norm": 0.005985860419714863,
|
1518 |
+
"learning_rate": 5.948322547929939e-06,
|
1519 |
+
"loss": 0.6882,
|
1520 |
+
"step": 209
|
1521 |
+
},
|
1522 |
+
{
|
1523 |
+
"epoch": 1.9524365334111469,
|
1524 |
+
"grad_norm": 0.006018365152445982,
|
1525 |
+
"learning_rate": 5.8543694044133984e-06,
|
1526 |
+
"loss": 0.7059,
|
1527 |
+
"step": 210
|
1528 |
+
},
|
1529 |
+
{
|
1530 |
+
"epoch": 1.9617741464838052,
|
1531 |
+
"grad_norm": 0.006178576965302145,
|
1532 |
+
"learning_rate": 5.760856092901394e-06,
|
1533 |
+
"loss": 0.6872,
|
1534 |
+
"step": 211
|
1535 |
+
},
|
1536 |
+
{
|
1537 |
+
"epoch": 1.9711117595564633,
|
1538 |
+
"grad_norm": 0.006209928845152174,
|
1539 |
+
"learning_rate": 5.667792534718639e-06,
|
1540 |
+
"loss": 0.6955,
|
1541 |
+
"step": 212
|
1542 |
+
},
|
1543 |
+
{
|
1544 |
+
"epoch": 1.9804493726291217,
|
1545 |
+
"grad_norm": 0.006362809796961763,
|
1546 |
+
"learning_rate": 5.575188603473112e-06,
|
1547 |
+
"loss": 0.6781,
|
1548 |
+
"step": 213
|
1549 |
+
},
|
1550 |
+
{
|
1551 |
+
"epoch": 1.98978698570178,
|
1552 |
+
"grad_norm": 0.0073402479875403605,
|
1553 |
+
"learning_rate": 5.483054124008528e-06,
|
1554 |
+
"loss": 0.669,
|
1555 |
+
"step": 214
|
1556 |
+
}
|
1557 |
+
],
|
1558 |
+
"logging_steps": 1,
|
1559 |
+
"max_steps": 321,
|
1560 |
+
"num_input_tokens_seen": 0,
|
1561 |
+
"num_train_epochs": 3,
|
1562 |
+
"save_steps": 107,
|
1563 |
+
"stateful_callbacks": {
|
1564 |
+
"TrainerControl": {
|
1565 |
+
"args": {
|
1566 |
+
"should_epoch_stop": false,
|
1567 |
+
"should_evaluate": false,
|
1568 |
+
"should_log": false,
|
1569 |
+
"should_save": true,
|
1570 |
+
"should_training_stop": false
|
1571 |
+
},
|
1572 |
+
"attributes": {}
|
1573 |
+
}
|
1574 |
+
},
|
1575 |
+
"total_flos": 6.043316961713062e+18,
|
1576 |
+
"train_batch_size": 2,
|
1577 |
+
"trial_name": null,
|
1578 |
+
"trial_params": null
|
1579 |
+
}
|
checkpoint-214/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c22096e6a9c9dea84f12ad6313d09723c960a987f46ad9af04dc6c1de407c91
|
3 |
+
size 10872
|
checkpoint-214/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-214/zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
checkpoint-321/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
checkpoint-321/config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen2.5-Math-1.5B-Instruct",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"eos_token_id": 151645,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 1536,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 8960,
|
12 |
+
"max_position_embeddings": 32768,
|
13 |
+
"max_window_layers": 21,
|
14 |
+
"model_type": "qwen2",
|
15 |
+
"num_attention_heads": 12,
|
16 |
+
"num_hidden_layers": 28,
|
17 |
+
"num_key_value_heads": 2,
|
18 |
+
"rms_norm_eps": 1e-06,
|
19 |
+
"rope_scaling": {
|
20 |
+
"factor": 8.0,
|
21 |
+
"type": "linear"
|
22 |
+
},
|
23 |
+
"rope_theta": 10000.0,
|
24 |
+
"sliding_window": null,
|
25 |
+
"tie_word_embeddings": true,
|
26 |
+
"torch_dtype": "bfloat16",
|
27 |
+
"transformers_version": "4.48.3",
|
28 |
+
"use_cache": false,
|
29 |
+
"use_sliding_window": false,
|
30 |
+
"vocab_size": 151665
|
31 |
+
}
|
checkpoint-321/generation_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"transformers_version": "4.48.3"
|
10 |
+
}
|