--- base_model: NousResearch/Meta-Llama-3-8B-Instruct library_name: peft license: other tags: - generated_from_trainer model-index: - name: outputs/lora-out results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: NousResearch/Meta-Llama-3-8B-Instruct model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: true load_in_4bit: false strict: false chat_template: llama3 datasets: - path: absolute-feedback-long.jsonl type: chat_template chat_template: llama3 field_messages: messages message_field_role: role message_field_content: content roles: user: - user assistant: - assistant val_set_size: 0.01 output_dir: ./outputs/lora-out sequence_len: 4096 sample_packing: false pad_to_sequence_len: false adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: fincode wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 32 micro_batch_size: 12 num_epochs: 3 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: deepspeed: deepspeed_configs/zero1.json warmup_steps: 20 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 3 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> ```

[Visualize in Weights & Biases](https://wandb.ai/guijinson/fincode/runs/9bh77pfv) # outputs/lora-out This model is a fine-tuned version of [NousResearch/Meta-Llama-3-8B-Instruct](https://huggingface.co/NousResearch/Meta-Llama-3-8B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0461 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 32 - total_train_batch_size: 3072 - total_eval_batch_size: 96 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.8935 | 0.0311 | 1 | 1.8884 | | 1.6965 | 0.2490 | 8 | 1.5971 | | 1.3733 | 0.4981 | 16 | 1.3446 | | 1.2466 | 0.7471 | 24 | 1.2463 | | 1.1852 | 0.9961 | 32 | 1.1822 | | 1.1444 | 1.2451 | 40 | 1.1379 | | 1.0986 | 1.4942 | 48 | 1.1052 | | 1.0774 | 1.7432 | 56 | 1.0816 | | 1.065 | 1.9922 | 64 | 1.0657 | | 1.055 | 2.2412 | 72 | 1.0551 | | 1.0438 | 2.4903 | 80 | 1.0484 | | 1.0394 | 2.7393 | 88 | 1.0463 | | 1.0466 | 2.9883 | 96 | 1.0461 | ### Framework versions - PEFT 0.11.1 - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.19.1 - Tokenizers 0.19.1