Diffusers
Safetensors
English
AmusedPipeline
art
File size: 23,705 Bytes
a2ff1d9
 
 
 
 
 
 
 
45f6840
 
 
 
 
09b6259
45f6840
 
 
0effe57
 
45f6840
 
 
1d11dd5
 
 
 
 
 
 
 
 
 
 
 
 
 
45f6840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
275bc56
45f6840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af0f5ef
45f6840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af0f5ef
45f6840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af0f5ef
45f6840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af0f5ef
45f6840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af0f5ef
45f6840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af0f5ef
45f6840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af0f5ef
45f6840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af0f5ef
45f6840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af0f5ef
 
 
 
45f6840
 
ec4f22d
af0f5ef
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
---
license: openrail++
language:
- en
library_name: diffusers
tags:
- art
---
# amused

![collage](./assets/collage_small.png)
<sup><sub>Images cherry-picked from 512 and 256 models. Images are degraded to load faster. See ./assets/collage_full.png for originals</sub></sup>

📃 Paper: [aMUSEd: An Open MUSE Reproduction](https://huggingface.co/papers/2401.01808)

| Model | Params |
|-------|--------|
| [amused-256](https://huggingface.co/huggingface/amused-256) | 803M |
| [amused-512](https://huggingface.co/huggingface/amused-512) | 808M |

Amused is a lightweight text to image model based off of the [muse](https://arxiv.org/pdf/2301.00704.pdf) architecture. Amused is particularly useful in applications that require a lightweight and fast model such as generating many images quickly at once.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/5dfcb1aada6d0311fd3d5448/97ca2Vqm7jBfCAzq20TtF.png)

*The diagram shows the training and inference pipelines for aMUSEd. aMUSEd consists
of three separately trained components: a pre-trained CLIP-L/14 text encoder, a VQ-GAN, and a
U-ViT. During training, the VQ-GAN encoder maps images to a 16x smaller latent resolution. The
proportion of masked latent tokens is sampled from a cosine masking schedule, e.g. cos(r · π
2 )
with r ∼ Uniform(0, 1). The model is trained via cross-entropy loss to predict the masked tokens.
After the model is trained on 256x256 images, downsampling and upsampling layers are added, and
training is continued on 512x512 images. During inference, the U-ViT is conditioned on the text
encoder’s hidden states and iteratively predicts values for all masked tokens. The cosine masking
schedule determines a percentage of the most confident token predictions to be fixed after every
iteration. After 12 iterations, all tokens have been predicted and are decoded by the VQ-GAN into
image pixels.*

## 1. Usage

### Text to image

#### 256x256 model

```python
import torch
from diffusers import AmusedPipeline

pipe = AmusedPipeline.from_pretrained(
    "huggingface/amused-256", variant="fp16", torch_dtype=torch.float16
)
pipe.vqvae.to(torch.float32)  # vqvae is producing nans in fp16
pipe = pipe.to("cuda")

prompt = "cowboy"
image = pipe(prompt, generator=torch.Generator('cuda').manual_seed(8)).images[0]
image.save('text2image_256.png')
```

![text2image_256](./assets/text2image_256.png)

#### 512x512 model

```python
import torch
from diffusers import AmusedPipeline

pipe = AmusedPipeline.from_pretrained(
    "huggingface/amused-512", variant="fp16", torch_dtype=torch.float16
)
pipe.vqvae.to(torch.float32)  # vqvae is producing nans n fp16
pipe = pipe.to("cuda")

prompt = "summer in the mountains"
image = pipe(prompt, generator=torch.Generator('cuda').manual_seed(2)).images[0]
image.save('text2image_512.png')
```

![text2image_512](./assets/text2image_512.png)

### Image to image

#### 256x256 model

```python
import torch
from diffusers import AmusedImg2ImgPipeline
from diffusers.utils import load_image

pipe = AmusedImg2ImgPipeline.from_pretrained(
    "huggingface/amused-256", variant="fp16", torch_dtype=torch.float16
)
pipe.vqvae.to(torch.float32)  # vqvae is producing nans in fp16
pipe = pipe.to("cuda")

prompt = "apple watercolor"
input_image = (
    load_image(
        "https://raw.githubusercontent.com/huggingface/amused/main/assets/image2image_256_orig.png"
    )
    .resize((256, 256))
    .convert("RGB")
)

image = pipe(prompt, input_image, strength=0.7, generator=torch.Generator('cuda').manual_seed(3)).images[0]
image.save('image2image_256.png')
```

![image2image_256_orig](./assets/image2image_256_orig.png) ![image2image_256](./assets/image2image_256.png)

#### 512x512 model

```python
import torch
from diffusers import AmusedImg2ImgPipeline
from diffusers.utils import load_image

pipe = AmusedImg2ImgPipeline.from_pretrained(
    "huggingface/amused-512", variant="fp16", torch_dtype=torch.float16
)
pipe.vqvae.to(torch.float32)  # vqvae is producing nans in fp16
pipe = pipe.to("cuda")

prompt = "winter mountains"
input_image = (
    load_image(
        "https://raw.githubusercontent.com/huggingface/amused/main/assets/image2image_512_orig.png"
    )
    .resize((512, 512))
    .convert("RGB")
)

image = pipe(prompt, input_image, generator=torch.Generator('cuda').manual_seed(15)).images[0]
image.save('image2image_512.png')
```

![image2image_512_orig](./assets/image2image_512_orig.png) ![image2image_512](./assets/image2image_512.png)

### Inpainting

#### 256x256 model

```python
import torch
from diffusers import AmusedInpaintPipeline
from diffusers.utils import load_image
from PIL import Image

pipe = AmusedInpaintPipeline.from_pretrained(
    "huggingface/amused-256", variant="fp16", torch_dtype=torch.float16
)
pipe.vqvae.to(torch.float32)  # vqvae is producing nans in fp16
pipe = pipe.to("cuda")

prompt = "a man with glasses"
input_image = (
    load_image(
        "https://raw.githubusercontent.com/huggingface/amused/main/assets/inpainting_256_orig.png"
    )
    .resize((256, 256))
    .convert("RGB")
)
mask = (
    load_image(
        "https://raw.githubusercontent.com/huggingface/amused/main/assets/inpainting_256_mask.png"
    )
    .resize((256, 256))
    .convert("L")
)    

for seed in range(20):
    image = pipe(prompt, input_image, mask, generator=torch.Generator('cuda').manual_seed(seed)).images[0]
    image.save(f'inpainting_256_{seed}.png')

```

![inpainting_256_orig](./assets/inpainting_256_orig.png) ![inpainting_256_mask](./assets/inpainting_256_mask.png) ![inpainting_256](./assets/inpainting_256.png)

#### 512x512 model

```python
import torch
from diffusers import AmusedInpaintPipeline
from diffusers.utils import load_image

pipe = AmusedInpaintPipeline.from_pretrained(
    "huggingface/amused-512", variant="fp16", torch_dtype=torch.float16
)
pipe.vqvae.to(torch.float32)  # vqvae is producing nans in fp16
pipe = pipe.to("cuda")

prompt = "fall mountains"
input_image = (
    load_image(
        "https://raw.githubusercontent.com/huggingface/amused/main/assets/inpainting_512_orig.jpeg"
    )
    .resize((512, 512))
    .convert("RGB")
)
mask = (
    load_image(
        "https://raw.githubusercontent.com/huggingface/amused/main/assets/inpainting_512_mask.png"
    )
    .resize((512, 512))
    .convert("L")
)
image = pipe(prompt, input_image, mask, generator=torch.Generator('cuda').manual_seed(0)).images[0]
image.save('inpainting_512.png')
```

![inpainting_512_orig](./assets/inpainting_512_orig.jpeg) 
![inpainting_512_mask](./assets/inpainting_512_mask.png) 
![inpainting_512](./assets/inpainting_512.png)

## 2. Performance

Amused inherits performance benefits from original [muse](https://arxiv.org/pdf/2301.00704.pdf). 

1. Parallel decoding: The model follows a denoising schedule that aims to unmask some percent of tokens at each denoising step. At each step, all masked tokens are predicted, and some number of tokens that the network is most confident about are unmasked. Because multiple tokens are predicted at once, we can generate a full 256x256 or 512x512 image in around 12 steps. In comparison, an autoregressive model must predict a single token at a time. Note that a 256x256 image with the 16x downsampled VAE that muse uses will have 256 tokens.

2. Fewer sampling steps: Compared to many diffusion models, muse requires fewer samples.

Additionally, amused uses the smaller CLIP as its text encoder instead of T5 compared to muse. Amused is also smaller with ~600M params compared the largest 3B param muse model. Note that being smaller, amused produces comparably lower quality results.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/5dfcb1aada6d0311fd3d5448/PEVklboNHZ1dgrco8Mu_-.png)

### Muse performance knobs

|                     | Uncompiled Transformer + regular attention | Uncompiled Transformer + flash attention (ms) | Compiled Transformer (ms) | Speed Up |
|---------------------|--------------------------------------------|-------------------------|----------------------|----------|
| 256 Batch Size 1    |                594.7                      |         507.7                |    212.1                  |   58%       |
| 512 Batch Size 1    |                637                      |        547                 |       249.9               |     54%     |
| 256 Batch Size 8    |                719                      |        628.6                 |        427.8              |    32%      |
| 512 Batch Size 8    |                  1000                    |         917.7                |       703.6               |    23%      |

Flash attention is enabled by default in the diffusers codebase through torch `F.scaled_dot_product_attention`

### torch.compile
To use torch.compile, simply wrap the transformer in torch.compile i.e.

```python
pipe.transformer = torch.compile(pipe.transformer)
```

Full snippet:

```python
import torch
from diffusers import AmusedPipeline

pipe = AmusedPipeline.from_pretrained(
    "huggingface/amused-256", variant="fp16", torch_dtype=torch.float16
)

# HERE use torch.compile
pipe.transformer = torch.compile(pipe.transformer)

pipe.vqvae.to(torch.float32)  # vqvae is producing nans in fp16
pipe = pipe.to("cuda")

prompt = "cowboy"
image = pipe(prompt, generator=torch.Generator('cuda').manual_seed(8)).images[0]
image.save('text2image_256.png')
```

## 3. Training

Amused can be finetuned on simple datasets relatively cheaply and quickly. Using 8bit optimizers, lora, and gradient accumulation, amused can be finetuned with as little as 5.5 GB. Here are a set of examples for finetuning amused on some relatively simple datasets. These training recipies are aggressively oriented towards minimal resources and fast verification -- i.e. the batch sizes are quite low and the learning rates are quite high. For optimal quality, you will probably want to increase the batch sizes and decrease learning rates.

All training examples use fp16 mixed precision and gradient checkpointing. We don't show 8 bit adam + lora as its about the same memory use as just using lora (bitsandbytes uses full precision optimizer states for weights below a minimum size).

### Finetuning the 256 checkpoint

These examples finetune on this [nouns](https://huggingface.co/datasets/m1guelpf/nouns) dataset.

Example results:

![noun1](./assets/noun1.png) ![noun2](./assets/noun2.png) ![noun3](./assets/noun3.png)

#### Full finetuning

Batch size: 8, Learning rate: 1e-4, Gives decent results in 750-1000 steps

| Batch Size | Gradient Accumulation Steps | Effective Total Batch Size | Memory Used |
|------------|-----------------------------|------------------|-------------|
|    8        |          1                   |     8             |      19.7 GB       |
|    4        |          2                   |     8             |      18.3 GB       |
|    1        |          8                   |     8             |      17.9 GB       |

```sh
accelerate launch training/training.py \
    --output_dir <output path> \
    --train_batch_size <batch size> \
    --gradient_accumulation_steps <gradient accumulation steps> \
    --learning_rate 1e-4 \
    --pretrained_model_name_or_path amused/amused-256 \
    --instance_data_dataset  'm1guelpf/nouns' \
    --image_key image \
    --prompt_key text \
    --resolution 256 \
    --mixed_precision fp16 \
    --lr_scheduler constant \
    --validation_prompts \
        'a pixel art character with square red glasses, a baseball-shaped head and a orange-colored body on a dark background' \
        'a pixel art character with square orange glasses, a lips-shaped head and a red-colored body on a light background' \
        'a pixel art character with square blue glasses, a microwave-shaped head and a purple-colored body on a sunny background' \
        'a pixel art character with square red glasses, a baseball-shaped head and a blue-colored body on an orange background' \
        'a pixel art character with square red glasses' \
        'a pixel art character' \
        'square red glasses on a pixel art character' \
        'square red glasses on a pixel art character with a baseball-shaped head' \
    --max_train_steps 10000 \
    --checkpointing_steps 500 \
    --validation_steps 250 \
    --gradient_checkpointing
```

#### Full finetuning + 8 bit adam

Note that this training config keeps the batch size low and the learning rate high to get results fast with low resources. However, due to 8 bit adam, it will diverge eventually. If you want to train for longer, you will have to up the batch size and lower the learning rate.

Batch size: 16, Learning rate: 2e-5, Gives decent results in ~750 steps

| Batch Size | Gradient Accumulation Steps | Effective Total Batch Size | Memory Used |
|------------|-----------------------------|------------------|-------------|
|    16        |          1                   |     16             |      20.1 GB       |
|    8        |          2                   |      16           |      15.6 GB       |
|    1        |          16                   |     16            |      10.7 GB       |

```sh
accelerate launch training/training.py \
    --output_dir <output path> \
    --train_batch_size <batch size> \
    --gradient_accumulation_steps <gradient accumulation steps> \
    --learning_rate 2e-5 \
    --use_8bit_adam \
    --pretrained_model_name_or_path amused/amused-256 \
    --instance_data_dataset  'm1guelpf/nouns' \
    --image_key image \
    --prompt_key text \
    --resolution 256 \
    --mixed_precision fp16 \
    --lr_scheduler constant \
    --validation_prompts \
        'a pixel art character with square red glasses, a baseball-shaped head and a orange-colored body on a dark background' \
        'a pixel art character with square orange glasses, a lips-shaped head and a red-colored body on a light background' \
        'a pixel art character with square blue glasses, a microwave-shaped head and a purple-colored body on a sunny background' \
        'a pixel art character with square red glasses, a baseball-shaped head and a blue-colored body on an orange background' \
        'a pixel art character with square red glasses' \
        'a pixel art character' \
        'square red glasses on a pixel art character' \
        'square red glasses on a pixel art character with a baseball-shaped head' \
    --max_train_steps 10000 \
    --checkpointing_steps 500 \
    --validation_steps 250 \
    --gradient_checkpointing
```

#### Full finetuning + lora

Batch size: 16, Learning rate: 8e-4, Gives decent results in 1000-1250 steps

| Batch Size | Gradient Accumulation Steps | Effective Total Batch Size | Memory Used |
|------------|-----------------------------|------------------|-------------|
|    16        |          1                   |     16             |      14.1 GB       |
|    8        |          2                   |      16           |      10.1 GB       |
|    1        |          16                   |     16            |      6.5 GB       |

```sh
accelerate launch training/training.py \
    --output_dir <output path> \
    --train_batch_size <batch size> \
    --gradient_accumulation_steps <gradient accumulation steps> \
    --learning_rate 8e-4 \
    --use_lora \
    --pretrained_model_name_or_path amused/amused-256 \
    --instance_data_dataset  'm1guelpf/nouns' \
    --image_key image \
    --prompt_key text \
    --resolution 256 \
    --mixed_precision fp16 \
    --lr_scheduler constant \
    --validation_prompts \
        'a pixel art character with square red glasses, a baseball-shaped head and a orange-colored body on a dark background' \
        'a pixel art character with square orange glasses, a lips-shaped head and a red-colored body on a light background' \
        'a pixel art character with square blue glasses, a microwave-shaped head and a purple-colored body on a sunny background' \
        'a pixel art character with square red glasses, a baseball-shaped head and a blue-colored body on an orange background' \
        'a pixel art character with square red glasses' \
        'a pixel art character' \
        'square red glasses on a pixel art character' \
        'square red glasses on a pixel art character with a baseball-shaped head' \
    --max_train_steps 10000 \
    --checkpointing_steps 500 \
    --validation_steps 250 \
    --gradient_checkpointing
```

### Finetuning the 512 checkpoint

These examples finetune on this [minecraft](https://huggingface.co/monadical-labs/minecraft-preview) dataset.

Example results:

![minecraft1](./assets/minecraft1.png) ![minecraft2](./assets/minecraft2.png) ![minecraft3](./assets/minecraft3.png)

#### Full finetuning

Batch size: 8, Learning rate: 8e-5, Gives decent results in 500-1000 steps

| Batch Size | Gradient Accumulation Steps | Effective Total Batch Size | Memory Used |
|------------|-----------------------------|------------------|-------------|
|    8        |          1                   |     8             |      24.2 GB       |
|    4        |          2                   |     8             |      19.7 GB       |
|    1        |          8                   |     8             |      16.99 GB       |

```sh
accelerate launch training/training.py \
    --output_dir <output path> \
    --train_batch_size <batch size> \
    --gradient_accumulation_steps <gradient accumulation steps> \
    --learning_rate 8e-5 \
    --pretrained_model_name_or_path amused/amused-512 \
    --instance_data_dataset  'monadical-labs/minecraft-preview' \
    --prompt_prefix 'minecraft ' \
    --image_key image \
    --prompt_key text \
    --resolution 512 \
    --mixed_precision fp16 \
    --lr_scheduler constant \
    --validation_prompts \
        'minecraft Avatar' \
        'minecraft character' \
        'minecraft' \
        'minecraft president' \
        'minecraft pig' \
    --max_train_steps 10000 \
    --checkpointing_steps 500 \
    --validation_steps 250 \
    --gradient_checkpointing
```

#### Full finetuning + 8 bit adam

Batch size: 8, Learning rate: 5e-6, Gives decent results in 500-1000 steps

| Batch Size | Gradient Accumulation Steps | Effective Total Batch Size | Memory Used |
|------------|-----------------------------|------------------|-------------|
|    8        |          1                   |     8             |      21.2 GB       |
|    4        |          2                   |     8             |      13.3 GB       |
|    1        |          8                   |     8             |      9.9 GB       |

```sh
accelerate launch training/training.py \
    --output_dir <output path> \
    --train_batch_size <batch size> \
    --gradient_accumulation_steps <gradient accumulation steps> \
    --learning_rate 5e-6 \
    --pretrained_model_name_or_path amused/amused-512 \
    --instance_data_dataset  'monadical-labs/minecraft-preview' \
    --prompt_prefix 'minecraft ' \
    --image_key image \
    --prompt_key text \
    --resolution 512 \
    --mixed_precision fp16 \
    --lr_scheduler constant \
    --validation_prompts \
        'minecraft Avatar' \
        'minecraft character' \
        'minecraft' \
        'minecraft president' \
        'minecraft pig' \
    --max_train_steps 10000 \
    --checkpointing_steps 500 \
    --validation_steps 250 \
    --gradient_checkpointing
```

#### Full finetuning + lora 

Batch size: 8, Learning rate: 1e-4, Gives decent results in 500-1000 steps

| Batch Size | Gradient Accumulation Steps | Effective Total Batch Size | Memory Used |
|------------|-----------------------------|------------------|-------------|
|    8        |          1                   |     8             |      12.7 GB       |
|    4        |          2                   |     8             |      9.0 GB       |
|    1        |          8                   |     8             |      5.6 GB       |

```sh
accelerate launch training/training.py \
    --output_dir <output path> \
    --train_batch_size <batch size> \
    --gradient_accumulation_steps <gradient accumulation steps> \
    --learning_rate 1e-4 \
    --pretrained_model_name_or_path amused/amused-512 \
    --instance_data_dataset  'monadical-labs/minecraft-preview' \
    --prompt_prefix 'minecraft ' \
    --image_key image \
    --prompt_key text \
    --resolution 512 \
    --mixed_precision fp16 \
    --lr_scheduler constant \
    --validation_prompts \
        'minecraft Avatar' \
        'minecraft character' \
        'minecraft' \
        'minecraft president' \
        'minecraft pig' \
    --max_train_steps 10000 \
    --checkpointing_steps 500 \
    --validation_steps 250 \
    --gradient_checkpointing
```

### Styledrop

[Styledrop](https://arxiv.org/abs/2306.00983) is an efficient finetuning method for learning a new style from a small number of images. It has an optional first stage to generate human picked additional training samples. The additional training samples can be used to augment the initial images. Our examples exclude the optional additional image selection stage and instead we just finetune on a single image.

This is our example style image:
![example](./training/A%20mushroom%20in%20[V]%20style.png)

#### 256

Example results:

![glowing_256_1](./assets/glowing_256_1.png) ![glowing_256_2](./assets/glowing_256_2.png) ![glowing_256_3](./assets/glowing_256_3.png)

Learning rate: 4e-4, Gives decent results in 1500-2000 steps

```sh
accelerate launch ./training/training.py \
    --output_dir <output path> \
    --mixed_precision fp16 \
    --report_to wandb \
    --use_lora \
    --pretrained_model_name_or_path amused/amused-256 \
    --train_batch_size 1 \
    --lr_scheduler constant \
    --learning_rate 4e-4 \
    --validation_prompts \
        'A chihuahua walking on the street in [V] style' \
        'A banana on the table in [V] style' \
        'A church on the street in [V] style' \
        'A tabby cat walking in the forest in [V] style' \
    --instance_data_image './training/A mushroom in [V] style.png' \
    --max_train_steps 10000 \
    --checkpointing_steps 500 \
    --validation_steps 100 \
    --resolution 256
```

#### 512

Learning rate: 1e-3, Lora alpha 1, Gives decent results in 1500-2000 steps

Example results:

![glowing_512_1](./assets/glowing_512_1.png) ![glowing_512_2](./assets/glowing_512_2.png) ![glowing_512_3](./assets/glowing_512_3.png)

```
accelerate launch ./training/training.py \
    --output_dir ../styledrop \
    --mixed_precision fp16 \
    --report_to wandb \
    --use_lora \
    --pretrained_model_name_or_path amused/amused-512 \
    --train_batch_size 1 \
    --lr_scheduler constant \
    --learning_rate 1e-3 \
    --validation_prompts \
        'A chihuahua walking on the street in [V] style' \
        'A banana on the table in [V] style' \
        'A church on the street in [V] style' \
        'A tabby cat walking in the forest in [V] style' \
    --instance_data_image './training/A mushroom in [V] style.png' \
    --max_train_steps 100000 \
    --checkpointing_steps 500 \
    --validation_steps 100 \
    --resolution 512 \
    --lora_alpha 1
```

## 4. Acknowledgements

Suraj led training. William led data and supported training. Patrick supported both training and
data and provided general guidance. Robin trained the VQ-GAN and provided general guidance.
Also, immense thanks to community contributor Isamu Isozaki for helpful discussions and code
contributions.

## 5. Citation

```
@misc{patil2024amused,
      title={aMUSEd: An Open MUSE Reproduction}, 
      author={Suraj Patil and William Berman and Robin Rombach and Patrick von Platen},
      year={2024},
      eprint={2401.01808},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```