File size: 33,995 Bytes
a9469a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
# chat.py
#!/usr/bin/env python3
# chat.py
# Copyright (c) 2025 Anemll
# Licensed under the MIT License

import argparse
import os
import re
import glob
from pathlib import Path
import coremltools as ct
from transformers import LlamaTokenizer, AutoTokenizer
import torch
import torch.nn.functional as F
import numpy as np
import queue
import threading
import time
import yaml
import sys

# ANSI color codes
LIGHT_BLUE = "\033[94m"
DARK_BLUE = "\033[34m"
LIGHT_GREEN = "\033[92m"
RESET_COLOR = "\033[0m"

# Add at the top with other constants
WARMUP_TOKEN_LIMIT = 10  # Maximum tokens to generate during warmup

class TokenPrinter:
    """Handles background printing of generated tokens."""
    def __init__(self, tokenizer):
        self.tokenizer = tokenizer
        self.token_queue = queue.Queue()
        self.stop_event = threading.Event()
        self.thread = None
        self.buffer = ""
        self.lock = threading.Lock()
        self.thinking = True  # Track if we're still in thinking mode
        self.decoding_buffer = []  # Buffer for token IDs
        # Timing and stats tracking
        self.start_time = time.time()
        self.token_count = 0
        self.prefill_time = 0
        self.inference_time = 0
        self.context_pos = 0
        self.start()

    def start(self):
        """Start the printer thread."""
        if self.thread is None:
            self.thread = threading.Thread(target=self._print_worker)
            self.thread.daemon = True
            self.thread.start()

    def add_token(self, token_id):
        """Add a token to the print queue."""
        if not self.stop_event.is_set():
            self.token_queue.put(token_id)
            self.token_count += 1

    def drain_buffer(self):
        """Decode token IDs from decoding_buffer in the main thread."""
        if not self.decoding_buffer:
            return

        # Decode all tokens at once in the main thread
        token_str = self.tokenizer.decode(self.decoding_buffer)
        self.decoding_buffer.clear()

        # Color-handling logic
        if self.thinking and "</think>" in token_str:
            self.thinking = False
            parts = token_str.split("</think>")
            if len(parts) > 0:
                print(parts[0] + "</think>", end='', flush=True)
                if len(parts) > 1:
                    print(LIGHT_BLUE + parts[1], end='', flush=True)
        else:
            if not self.thinking:
                print(LIGHT_BLUE + token_str, end='', flush=True)
            else:
                print(token_str, end='', flush=True)

    def _print_worker(self):
        """Worker thread that takes token_ids from the queue."""
        while not self.stop_event.is_set():
            try:
                token_id = self.token_queue.get(timeout=0.01)
                with self.lock:
                    self.decoding_buffer.append(token_id)
                self.token_queue.task_done()
            except queue.Empty:
                continue
            except Exception as e:
                print(f"\nError: Token printer error: {str(e)}")
                break

    def stop(self):
        """Stop the printer thread."""
        if self.thread and self.thread.is_alive():
            self.stop_event.set()
            try:
                self.thread.join(timeout=1.0)
            except Exception:
                pass
            print(RESET_COLOR)  # Reset color at the end
        return self.buffer

    def set_timing(self, prefill_time, inference_time, context_pos):
        """Set timing information."""
        self.prefill_time = prefill_time
        self.inference_time = inference_time
        self.context_pos = context_pos

def parse_model_path(path):
    """Parse model path and return full path with .mlmodelc or .mlpackage extension."""
    path = Path(path)
    
    # If path exists exactly as specified, return it
    if path.exists():
        return str(path)
        
    # Try with both extensions
    candidates = [
        path,  # Original path
        path.with_suffix('.mlmodelc'),  # With .mlmodelc
        path.with_suffix('.mlpackage'),  # With .mlpackage
        Path(str(path) + '.mlmodelc'),  # Handle case where extension is included
        Path(str(path) + '.mlpackage')
    ]
    
    # Try all possible paths
    for candidate in candidates:
        if candidate.exists():
            print(f"Found model at: {candidate}")
            return str(candidate)
            
    # If we get here, no valid path was found
    print("\nError: Model not found. Tried following paths:")
    for candidate in candidates:
        print(f"  {candidate}")
    raise FileNotFoundError(f"Model not found: {path}")

def parse_ffn_filename(path):
    """Parse FFN model filename to extract chunk information."""
    path = Path(path)
    pattern = r'FFN_PF.*_chunk_(\d+)of(\d+)'
    match = re.search(pattern, path.name)
    
    if match:
        current_chunk = int(match.group(1))
        total_chunks = int(match.group(2))
        return current_chunk, total_chunks
    return None, None

def find_all_chunks(base_path):
    """Find all chunk files matching the base FFN path pattern."""
    path = Path(base_path)
    pattern = re.sub(r'_chunk_\d+of\d+', '_chunk_*', str(path))
    return sorted(glob.glob(pattern))

def load_model(path, function_name=None):
    """Load a CoreML model, handling both .mlmodelc and .mlpackage formats."""
    path = Path(path)
    compute_unit = ct.ComputeUnit.CPU_AND_NE
    
    try:
        if path.suffix == '.mlmodelc':
            # For compiled models (.mlmodelc), use CompiledMLModel
            if function_name:
                return ct.models.CompiledMLModel(str(path), compute_unit, function_name=function_name)
            else:
                return ct.models.CompiledMLModel(str(path), compute_unit)
        else:
            # For packages (.mlpackage)
            if function_name:
                return ct.models.MLModel(str(path), function_name=function_name)
            else:
                return ct.models.MLModel(str(path))
                
    except RuntimeError as e:
        if "valid manifest does not exist" in str(e):
            print(f"\nError: Could not load compiled model at {path}")
            print("This might be because:")
            print("1. The model is not properly compiled")
            print("2. The model was compiled for a different OS version")
            print("3. The model needs to be recompiled")
            print("\nTry using the .mlpackage version instead, or recompile the model.")
        raise

def load_metadata(model,args):
    # Extract metadata and config parameters
    metadata = {}
    if hasattr(model, 'user_defined_metadata'):
        meta = model.user_defined_metadata
        
        # Extract key parameters with defaults
        metadata['context_length'] = int(meta.get('com.anemll.context_length', 512))
        metadata['state_length'] = int(meta.get('com.anemll.state_length', metadata['context_length']))  # Added state_length
        metadata['batch_size'] = int(meta.get('com.anemll.batch_size', 64))
        metadata['lut_bits'] = int(meta.get('com.anemll.lut_bits', 0))
        metadata['num_chunks'] = int(meta.get('com.anemll.num_chunks', 1))
        
        print("\nExtracted Parameters:")
        print(f"  Context Length: {metadata['context_length']}")
        print(f"  State Length: {metadata['state_length']}")
        print(f"  Prefill Batch Size: {metadata['batch_size']}")
        print(f"  LUT Bits: {metadata['lut_bits']}")
        print(f"  Number of Chunks: {metadata['num_chunks']}")
        
        # Print model info
        print("\nModel Info:")
        if 'com.anemll.info' in meta:
            print(f"  {meta['com.anemll.info']}")
        if 'com.github.apple.coremltools.version' in meta:
            print(f"  CoreML Tools: {meta['com.github.apple.coremltools.version']}")
        
        # Print model input/output shapes
        print("\nModel Shapes:")
        if hasattr(model, 'input_description'):
            print("  Inputs:")
            for name, desc in model.input_description.items():
                print(f"    {name}: {desc}")
        if hasattr(model, 'output_description'):
            print("  Outputs:")
            for name, desc in model.output_description.items():
                print(f"    {name}: {desc}")
    else:
        print("\nWarning: No metadata found in model")

        # Check if model directory name contains context length pattern (ctxXXX)
        ctx_len = 512
        if args.context_length is  None:
            import re
            ctx_match = re.search(r'ctx(\d+)', str(args.d))
            if ctx_match:
                ctx_len0 = int(ctx_match.group(1))
                if 512 <= ctx_len0 <= 8096:
                    ctx_len = ctx_len0
                    print(f"\nDetected context length {ctx_len} from directory name")
            else:
                print(f"\nWarning: No context length found in directory  {ctx_len} from directory name {args.d}")
        else:
            ctx_len = args.context_length

        # Use defaults
        metadata['context_length'] = ctx_len
        metadata['state_length'] = ctx_len
        metadata['batch_size'] = 64
        metadata['lut_bits'] = 4
        metadata['num_chunks'] = 4
        print("\nUsing default parameters:")
        print(f"  Context Length: {metadata['context_length']}")
        print(f"  State Length: {metadata['state_length']}")
        print(f"  Prefill Batch Size: {metadata['batch_size']}")
        print(f"  LUT Bits: {metadata['lut_bits']}")
        print(f"  Number of Chunks: {metadata['num_chunks']}")
    return metadata
    
def load_models(args,metadata):
    """Load all required models and extract metadata."""
    print("\nLoading models...")
    
    try:
        # Load embeddings model
        print("\nLoading embeddings model...")
        embed_path = parse_model_path(args.embed)
        print(f"Loading from: {embed_path}")
        embed_model = load_model(embed_path)
        print("Embeddings model loaded successfully")
        metadata = load_metadata(embed_model,args)
        

        
        # Load LM head model
        print("\nLoading LM head model...")
        lmhead_path = parse_model_path(args.lmhead)
        print(f"Loading from: {lmhead_path}")
        lmhead_model = load_model(lmhead_path)
        print("LM head model loaded successfully")
        
        # Parse FFN path and find chunks if needed
        print("\nLoading FFN+PREFILL model(s)...")
        ffn_path = parse_model_path(args.ffn)
        chunk_no, total_chunks = parse_ffn_filename(ffn_path)
        
        ffn_models = []
        if chunk_no and total_chunks:
            print(f"\nDetected chunked FFN+PREFILL model ({total_chunks} chunks)")
            # Find and load all chunks
            chunk_paths = find_all_chunks(ffn_path)
            if len(chunk_paths) != total_chunks:
                raise ValueError(f"Found {len(chunk_paths)} chunks but filename indicates {total_chunks} chunks")
                
            for chunk_path in chunk_paths:
                print(f"\nLoading FFN+PREFILL chunk: {Path(chunk_path).name}")
                try:
                    # For chunked models, we need both infer and prefill functions
                    ffn_models.append({
                        'infer': load_model(chunk_path, function_name='infer'),
                        'prefill': load_model(chunk_path, function_name='prefill')
                    })
                    print("Chunk loaded successfully")
                except Exception as e:
                    print(f"Error loading chunk {chunk_path}: {str(e)}")
                    raise
            metadata = load_metadata(ffn_models[0],args)

        else:
            print("\nLoading single FFN model...")
            ffn_models.append(load_model(ffn_path))
            print("FFN model loaded successfully")
        
        return embed_model, ffn_models, lmhead_model, metadata
        
    except Exception as e:
        print(f"\nError loading models: {str(e)}")
        print("\nPlease ensure all model files exist and are accessible.")
        print("Expected files:")
        print(f"  Embeddings: {args.embed}")
        print(f"  LM Head: {args.lmhead}")
        print(f"  FFN: {args.ffn}")
        raise

# At the top of the file, make this a default path

def initialize_tokenizer(model_path=None):
    """Initialize and configure the tokenizer."""
    try:

        
        tokenizer = AutoTokenizer.from_pretrained(
            str(model_path), 
            use_fast=False,
            trust_remote_code=True
        )
        
        print("\nTokenizer Configuration:")
        print(f"Tokenizer type: {type(tokenizer)}")
        print(f"Tokenizer name: {tokenizer.__class__.__name__}")
        print(f"Vocabulary size: {len(tokenizer)}")
        print(f"Model max length: {tokenizer.model_max_length}")

        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token
            tokenizer.pad_token_id = tokenizer.eos_token_id
            print("Set PAD token to EOS token")
        
        tokenizer.padding_side = "left"
        
        print(f"\nSpecial Tokens:")
        print(f"PAD token: '{tokenizer.pad_token}' (ID: {tokenizer.pad_token_id})")
        print(f"EOS token: '{tokenizer.eos_token}' (ID: {tokenizer.eos_token_id})")
        print(f"BOS token: '{tokenizer.bos_token}' (ID: {tokenizer.bos_token_id})")
        print(f"UNK token: '{tokenizer.unk_token}' (ID: {tokenizer.unk_token_id})")

        return tokenizer
        
    except Exception as e:
        print(f"\nError: Failed to load tokenizer from {model_path}")
        print(f"Error details: {str(e)}")
        print(f"Error type: {type(e)}")
        print("\nThis code requires a Llama 3.2 model for chat template functionality.")
        print("Please provide the path to a Llama 3.2 model directory.")
        import traceback
        traceback.print_exc()
        raise



def make_causal_mask(length, start):
    """Create causal attention mask."""
    mask = np.full((1, 1, length, length), -np.inf, dtype=np.float16)
    row_indices = np.arange(length).reshape(length, 1)
    col_indices = np.arange(length).reshape(1, length)
    mask[:, :, col_indices <= (row_indices + start)] = 0
    return mask

def run_prefill(embed_model, ffn_models, input_ids, current_pos, context_length, batch_size, state):
    """Run prefill on the input sequence."""
    #print(f"[DEBUG] Running prefill from 0 to {current_pos}")
    
    # Process in batches
    batch_pos = 0
    while batch_pos < current_pos:
        batch_end = min(batch_pos + batch_size, current_pos)
        current_batch_size = batch_end - batch_pos
        
        #print(f"[DEBUG] Prefill batch {batch_pos}-{batch_end} (size={current_batch_size})")
        
        # Get current batch
        batch_input = input_ids[:, batch_pos:batch_end]
        
        # Pad to full batch size
        batch_input = F.pad(
            batch_input,
            (0, batch_size - current_batch_size),
            value=0
        )
        
        # Generate position IDs for this batch
        position_ids = torch.arange(batch_pos, batch_pos + batch_size, dtype=torch.int32)
        
        # Create causal mask for this batch
        causal_mask = make_causal_mask(context_length, 0)  # Always start from 0 for prefill
        causal_mask = torch.tensor(causal_mask, dtype=torch.float16)
        batch_causal_mask = causal_mask[:, :, batch_pos:batch_pos + batch_size, :]
        
        # Run embeddings
        hidden_states = torch.from_numpy(
            embed_model.predict({'input_ids': batch_input.numpy()})['hidden_states']
        )
        
        # Run through FFN chunks
        for ffn_model in ffn_models:
            if isinstance(ffn_model, dict):
                inputs = {
                    'hidden_states': hidden_states.numpy(),
                    'position_ids': position_ids.numpy(),
                    'causal_mask': batch_causal_mask.numpy(),
                    'current_pos': np.array([batch_pos], dtype=np.int32)
                }
                output = ffn_model['prefill'].predict(inputs, state)
                hidden_states = torch.from_numpy(output['output_hidden_states'])
        
        batch_pos = batch_end
    
    return torch.tensor([current_pos], dtype=torch.int32)

def generate_next_token(embed_model, ffn_models, lmhead_model, input_ids, pos, context_length, state=None, temperature=0.0):
    """Generate the next token."""
    # Get current token
    current_token = input_ids[:, pos-1:pos]
    
    # Run embeddings
    hidden_states = torch.from_numpy(
        embed_model.predict({'input_ids': current_token.numpy()})['hidden_states']
    )
    
    # Create masks
    update_mask = torch.zeros((1, 1, context_length, 1), dtype=torch.float16)
    update_mask[0, 0, pos-1, 0] = 1.0
    position_ids = torch.tensor([pos-1], dtype=torch.int32)
    
    # Create causal mask for current position
    causal_mask = make_causal_mask(context_length, 0)  # Always start from 0 for generation
    single_causal_mask = torch.tensor(causal_mask[:, :, pos-1:pos, :], dtype=torch.float16)
    
    # Run through FFN chunks
    for ffn_model in ffn_models:
        if isinstance(ffn_model, dict):
            inputs = {
                'hidden_states': hidden_states.numpy(),
                'update_mask': update_mask.numpy(),
                'position_ids': position_ids.numpy(),
                'causal_mask': single_causal_mask.numpy(),
                'current_pos': position_ids.numpy()
            }
            output = ffn_model['infer'].predict(inputs, state)
            hidden_states = torch.from_numpy(output['output_hidden_states'])
    
    # Run LM head and get next token
    lm_output = lmhead_model.predict({'hidden_states': hidden_states.numpy()})
    
    if 'logits1' in lm_output:
        logits_parts = []
        for i in range(1, 9):
            key = f'logits{i}'
            if key in lm_output:
                logits_parts.append(torch.from_numpy(lm_output[key]))
        logits = torch.cat(logits_parts, dim=-1)
    else:
        logits = torch.from_numpy(lm_output['output_logits'])
    
    if temperature > 0:
        logits = logits / temperature
        probs = F.softmax(logits[0, -1, :], dim=-1)
        next_token = torch.multinomial(probs, num_samples=1).item()
    else:
        next_token = torch.argmax(logits[0, -1, :]).item()
    
    return next_token

def create_unified_state(ffn_models, context_length):
    """Create unified KV cache state for transformer."""
    if isinstance(ffn_models[0], dict):
        # Use first FFN model's prefill function to create state
        state = ffn_models[0]['prefill'].make_state()
        print(f"\nCreated unified transformer state for {len(ffn_models)} chunks")
        return state
    else:
        state = ffn_models[0].make_state()
        print("\nCreated unified transformer state")
        return state

def get_user_input():
    sys.stdout.write(f"\n{LIGHT_GREEN}You:{RESET_COLOR} ")
    sys.stdout.flush()
    line = sys.stdin.readline()
    if not line:
        raise EOFError
    return line.rstrip('\n')

def chat_loop(embed_model, ffn_models, lmhead_model, tokenizer, metadata, state, auto_prompt=None, warmup=False):
    """Interactive chat loop."""
    context_length = metadata.get('context_length')
    batch_size = metadata.get('batch_size', 64)
    
    if not warmup:
        print(f"\nUsing context length: {context_length}")
        print("\nStarting chat session. Press Ctrl+D to exit.")
        print("Type your message and press Enter to chat.")
    
    # Keep track of conversation history
    conversation = []
    
    try:
        while True:
            try:
                if not warmup:
                    print(f"\n{LIGHT_GREEN}You:{RESET_COLOR}", end=' ', flush=True)
                if auto_prompt is not None:
                    user_input = auto_prompt
                    if not warmup:
                        print(user_input)
                else:
                    user_input = input().strip()
            except EOFError:
                if not warmup:
                    print("\nExiting chat...")
                break
            
            if not user_input:
                continue
            
            # Add user message to conversation
            conversation.append({"role": "user", "content": user_input})
            
            # Format using chat template with full history
            base_input_ids = tokenizer.apply_chat_template(
                conversation,
                return_tensors="pt",
                add_generation_prompt=True
            ).to(torch.int32)
            
            # Check if we need to trim history
            while base_input_ids.size(1) > context_length - 100:  # Leave room for response
                # Remove oldest message pair (user + assistant)
                if len(conversation) > 2:
                    conversation = conversation[2:]  # Remove oldest pair
                    base_input_ids = tokenizer.apply_chat_template(
                        conversation,
                        return_tensors="pt",
                        add_generation_prompt=True
                    ).to(torch.int32)
                else:
                    # If only current message remains and still too long, truncate
                    base_input_ids = base_input_ids[:, -context_length//2:]
                    break
            
            context_pos = base_input_ids.size(1)
            
            # Pad sequence to context_size
            input_ids = F.pad(
                base_input_ids,
                (0, context_length - context_pos),
                value=0
            )
            
            if not warmup:
                print(f"\n{LIGHT_BLUE}Assistant:{RESET_COLOR}", end=' ', flush=True)
            
            # Initialize token printer and collect response
            token_printer = TokenPrinter(tokenizer)
            response_tokens = []
            generation_start_time = time.time()
            
            try:
                # Create initial causal mask
                causal_mask = make_causal_mask(context_length, 0)
                causal_mask = torch.tensor(causal_mask, dtype=torch.float16)
                
                # Run prefill on entire context
                current_pos = run_prefill(
                    embed_model,
                    ffn_models,
                    input_ids,
                    context_pos,
                    context_length,
                    batch_size,
                    state
                )
                #print(f"\n[DEBUG] After initial prefill - current_pos: {current_pos}")
                
                # Generation loop
                pos = context_pos
                tokens_generated = 0
                inference_start = time.time()  # Start inference timing
                
                while True:
                    # Check if we need to shift window
                    if pos >= context_length - 2:
                        # Calculate shift to maintain full batches
                        batch_size = metadata.get('batch_size', 64)
                        # Calculate max batches that fit in context
                        max_batches = context_length // batch_size
                        desired_batches = max(1, max_batches - 2)  # Leave room for new tokens
                        new_size = min(desired_batches * batch_size, context_length - batch_size)
                        
                        # Create shifted input_ids
                        tmp = torch.zeros((1, context_length), dtype=torch.int32)
                        tmp[:,0:new_size] = input_ids[:,pos-new_size:pos]
                        input_ids = tmp
                        
                        # Reset state and run prefill
                        # keep the same state
                        #state = create_unified_state(ffn_models, context_length)
                        current_pos = run_prefill(
                            embed_model,
                            ffn_models,
                            input_ids,
                            new_size,  # Prefill the entire shifted content
                            context_length,
                            batch_size,
                            state
                        )
                        
                        # Start generating from the next position
                        pos = new_size  # Don't back up, continue from where we left off
                        
                        #print(f"\n[DEBUG] After shift - next token will be at pos {pos}")
                        #print(f"[DEBUG] Context before next token: {tokenizer.decode(input_ids[0, pos-40:pos])}")
                        
                        window_shifted = True
                    
                    # Generate next token
                    next_token = generate_next_token(
                        embed_model,
                        ffn_models,
                        lmhead_model,
                        input_ids,
                        pos,
                        context_length,
                        state
                    )
                    
                    # Add token
                    input_ids[0, pos] = next_token
                    if not warmup:
                        token_printer.add_token(next_token)
                        token_printer.drain_buffer()
                    response_tokens.append(next_token)
                    
                    pos += 1
                    tokens_generated += 1
                    
                    # In warmup mode, limit tokens
                    if warmup and tokens_generated >= WARMUP_TOKEN_LIMIT:
                        break
                    
                    if next_token == tokenizer.eos_token_id:
                        break
                
                inference_time = time.time() - inference_start  # Calculate inference time
                
                # Add assistant response to conversation
                response_text = token_printer.stop()
                conversation.append({"role": "assistant", "content": response_text})
                
                # Print stats only if not in warmup
                if not warmup:
                    total_time = time.time() - generation_start_time
                    prefill_time = total_time - inference_time
                    inference_tokens_per_sec = len(response_tokens) / inference_time if inference_time > 0 else 0
                    prefill_ms = prefill_time * 1000
                    prefill_tokens_per_sec = context_pos / prefill_time if prefill_time > 0 else 0
                    print(f"{DARK_BLUE}{inference_tokens_per_sec:.1f} t/s, "
                          f"TTFT: {prefill_ms:.1f}ms ({prefill_tokens_per_sec:.1f} t/s), "
                          f"{len(response_tokens)} tokens{RESET_COLOR}")
                
                if auto_prompt is not None:
                    break
                
            except KeyboardInterrupt:
                if not warmup:
                    print("\nGeneration interrupted")
                token_printer.stop()
                continue
                
    except Exception as e:
        if not warmup:
            print(f"\nError in chat loop: {str(e)}")
            import traceback
            traceback.print_exc()

def main():
    parser = argparse.ArgumentParser(description='Full Chat with CoreML LLaMA with context window shifting (c) 2025 Anemll')
    
    # Add meta.yaml option
    parser.add_argument('--meta', type=str, help='Path to meta.yaml to load all parameters')
    
    # Add existing arguments
    parser.add_argument('--d', '--dir', type=str, default='.',
                       help='Directory containing model files (default: current directory)')
    parser.add_argument('--embed', type=str, required=False,
                       help='Path to embeddings model (relative to --dir)')
    parser.add_argument('--ffn', type=str, required=False,
                       help='Path to FFN model (can be chunked, relative to --dir)')
    parser.add_argument('--lmhead', type=str, required=False,
                       help='Path to LM head model (relative to --dir)')
    parser.add_argument('--tokenizer', type=str, required=False,
                       help='Path to tokenizer')
    
    # Add new argument for auto-generation
    parser.add_argument('--prompt', type=str,
                       help='If specified, run once with this prompt and exit')
    
    # Model configuration
    parser.add_argument('--context-length', type=int,
                       help='Context length for the model (default: 512), if not provided, it will be detected from the model directory name ctxNUMBER')
    
    args = parser.parse_args()
    
    # If meta.yaml is provided, load parameters from it
    if args.meta:
        try:
            with open(args.meta, 'r') as f:
                meta = yaml.safe_load(f)
            params = meta['model_info']['parameters']
            
            # Set model directory to meta.yaml directory if not specified
            if not args.d or args.d == '.':
                args.d = str(Path(args.meta).parent)
            
            # Build model paths based on parameters
            prefix = params.get('model_prefix', 'llama')  # Default to 'llama' if not specified
            lut_ffn = f"_lut{params['lut_ffn']}" if params['lut_ffn'] != 'none' else ''
            lut_lmhead = f"_lut{params['lut_lmhead']}" if params['lut_lmhead'] != 'none' else ''
            num_chunks = int(params['num_chunks'])
            
            # Set model paths if not specified
            if not args.embed:
                args.embed = f'{prefix}_embeddings'
            if not args.lmhead:
                args.lmhead = f'{prefix}_lm_head{lut_lmhead}'
            if not args.ffn:
                args.ffn = f'{prefix}_FFN_PF{lut_ffn}_chunk_01of{num_chunks:02d}'
            if not args.tokenizer:
                args.tokenizer = args.d
            
            # Set other parameters
            args.context_length = int(params['context_length'])
            args.batch_size = int(params['batch_size'])
            args.num_chunks = num_chunks
            
            print(f"\nLoaded parameters from {args.meta}:")
            print(f"  Context Length: {args.context_length}")
            print(f"  Batch Size: {args.batch_size}")
            print(f"  Num Chunks: {args.num_chunks}")
            print(f"  Models Directory: {args.d}")
            print(f"  Embeddings: {args.embed}")
            print(f"  LM Head: {args.lmhead}")
            print(f"  FFN: {args.ffn}")
            
        except Exception as e:
            print(f"\nError loading meta.yaml: {str(e)}")
            sys.exit(1)
    
    # Convert directory to absolute path
    model_dir = Path(args.d).resolve()
    if not model_dir.exists():
        print(f"\nError: Model directory not found: {model_dir}")
        return 1
        
    print(f"\nUsing model directory: {model_dir}")
    print(f"Context length: {args.context_length}")
    
    try:
        # Update paths to be relative to model directory
        args.embed = str(model_dir / args.embed)
        args.ffn = str(model_dir / args.ffn)
        args.lmhead = str(model_dir / args.lmhead)
        
        # Handle tokenizer path separately since it's not relative to model_dir
        if args.tokenizer is None:
            args.tokenizer = str(model_dir)
        
        if not Path(args.tokenizer).exists():
            print(f"\nError: Tokenizer directory not found: {args.tokenizer}")
            return 1
    
        args.tokenizer = str(Path(args.tokenizer).resolve())  # Convert to absolute path
        print(f"Using tokenizer path: {args.tokenizer}")
        
        metadata = {}
        # Load models and extract metadata
        embed_model, ffn_models, lmhead_model, metadata = load_models(args,metadata)
        
        print(f"\nMetadata befor args.context_length: {metadata}")

        # Override context length from command line if provided
        if args.context_length is not None:
            metadata['context_length'] = args.context_length
            metadata['state_length'] = args.context_length  # Also update state_length
            print(f"\nOverriding context length from command line: {args.context_length}")
        
        print(f"\nMetadata after load_models: {metadata}")
        
        # Load tokenizer with resolved path
        tokenizer = initialize_tokenizer(args.tokenizer)
        if tokenizer is None:
            raise RuntimeError("Failed to initialize tokenizer")
        
        # Create unified state once
        state = create_unified_state(ffn_models, metadata['context_length'])
        
        # Warmup runs to prevent Python GIL issues with CoreML !
        for i in range(2):
            chat_loop(
                embed_model=embed_model,
                ffn_models=ffn_models,
                lmhead_model=lmhead_model,
                tokenizer=tokenizer,
                metadata=metadata,
                state=state,  # Pass the state
                warmup=True,
                auto_prompt="who are you?"
            )
        
        # Main run
        chat_loop(
            embed_model=embed_model,
            ffn_models=ffn_models,
            lmhead_model=lmhead_model,
            tokenizer=tokenizer,
            metadata=metadata,
            state=state,  # Pass the state
            warmup=False,
            auto_prompt=args.prompt
        )
        
    except Exception as e:
        print(f"\nError: {str(e)}")
        import traceback
        traceback.print_exc()
        return 1
    
    return 0

if __name__ == "__main__":
    exit(main())