# chat.py #!/usr/bin/env python3 # chat.py # Copyright (c) 2025 Anemll # Licensed under the MIT License import argparse import os import re import glob from pathlib import Path import coremltools as ct from transformers import LlamaTokenizer, AutoTokenizer import torch import torch.nn.functional as F import numpy as np import queue import threading import time import yaml import sys # ANSI color codes LIGHT_BLUE = "\033[94m" DARK_BLUE = "\033[34m" LIGHT_GREEN = "\033[92m" RESET_COLOR = "\033[0m" # Add at top with other constants WARMUP_TOKEN_LIMIT = 10 # Maximum tokens to generate during warmup class TokenPrinter: """Handles background printing of generated tokens.""" def __init__(self, tokenizer): self.tokenizer = tokenizer self.token_queue = queue.Queue() self.stop_event = threading.Event() self.thread = None self.buffer = "" self.lock = threading.Lock() self.thinking = True # Track if we're still in thinking mode self.decoding_buffer = [] # Buffer for token IDs # Add token counting and timing self.start_time = time.time() self.token_count = 0 self.start() def start(self): """Start the printer thread.""" if self.thread is None: self.thread = threading.Thread(target=self._print_worker) self.thread.daemon = True self.thread.start() def add_token(self, token_id): """Add a token to the print queue.""" if not self.stop_event.is_set(): self.token_queue.put(token_id) self.token_count += 1 def drain_buffer(self): """Decode token IDs from decoding_buffer in the main thread.""" if not self.decoding_buffer: return # Decode all tokens at once in the main thread token_str = self.tokenizer.decode(self.decoding_buffer) self.decoding_buffer.clear() # Color-handling logic if self.thinking and "" in token_str: self.thinking = False parts = token_str.split("") if len(parts) > 0: print(parts[0] + "", end='', flush=True) if len(parts) > 1: print(LIGHT_BLUE + parts[1], end='', flush=True) else: if not self.thinking: print(LIGHT_BLUE + token_str, end='', flush=True) else: print(token_str, end='', flush=True) def _print_worker(self): """Worker thread that takes token_ids from the queue.""" while not self.stop_event.is_set(): try: token_id = self.token_queue.get(timeout=0.01) with self.lock: self.decoding_buffer.append(token_id) self.token_queue.task_done() except queue.Empty: continue except Exception as e: print(f"\nError: Token printer error: {str(e)}") break def stop(self): """Stop the printer thread.""" if self.thread and self.thread.is_alive(): self.stop_event.set() try: self.thread.join(timeout=1.0) except Exception: pass # Calculate and print tokens/s with shorter format in blue elapsed = time.time() - self.start_time if elapsed > 0 and self.token_count > 0: tokens_per_sec = self.token_count / elapsed print(f"\n{DARK_BLUE}{tokens_per_sec:.1f} t/s{RESET_COLOR}") else: print(RESET_COLOR) # Reset color at the end return self.buffer def parse_model_path(path): """Parse model path and return full path with .mlmodelc or .mlpackage extension.""" path = Path(path) # If path exists exactly as specified, return it if path.exists(): return str(path) # Try with both extensions candidates = [ path, # Original path path.with_suffix('.mlmodelc'), # With .mlmodelc path.with_suffix('.mlpackage'), # With .mlpackage Path(str(path) + '.mlmodelc'), # Handle case where extension is included Path(str(path) + '.mlpackage') ] # Try all possible paths for candidate in candidates: if candidate.exists(): print(f"Found model at: {candidate}") return str(candidate) # If we get here, no valid path was found print("\nError: Model not found. Tried following paths:") for candidate in candidates: print(f" {candidate}") raise FileNotFoundError(f"Model not found: {path}") def parse_ffn_filename(path): """Parse FFN model filename to extract chunk information.""" path = Path(path) pattern = r'FFN_PF.*_chunk_(\d+)of(\d+)' match = re.search(pattern, path.name) if match: current_chunk = int(match.group(1)) total_chunks = int(match.group(2)) return current_chunk, total_chunks return None, None def find_all_chunks(base_path): """Find all chunk files matching the base FFN path pattern.""" path = Path(base_path) pattern = re.sub(r'_chunk_\d+of\d+', '_chunk_*', str(path)) return sorted(glob.glob(pattern)) def load_model(path, function_name=None): """Load a CoreML model, handling both .mlmodelc and .mlpackage formats.""" path = Path(path) compute_unit = ct.ComputeUnit.CPU_AND_NE try: if path.suffix == '.mlmodelc': # For compiled models (.mlmodelc), use CompiledMLModel if function_name: return ct.models.CompiledMLModel(str(path), compute_unit, function_name=function_name) else: return ct.models.CompiledMLModel(str(path), compute_unit) else: # For packages (.mlpackage) if function_name: return ct.models.MLModel(str(path), function_name=function_name) else: return ct.models.MLModel(str(path)) except RuntimeError as e: if "valid manifest does not exist" in str(e): print(f"\nError: Could not load compiled model at {path}") print("This might be because:") print("1. The model is not properly compiled") print("2. The model was compiled for a different OS version") print("3. The model needs to be recompiled") print("\nTry using the .mlpackage version instead, or recompile the model.") raise def load_metadata(model,args): # Extract metadata and config parameters metadata = {} if hasattr(model, 'user_defined_metadata'): meta = model.user_defined_metadata # Extract key parameters with defaults metadata['context_length'] = int(meta.get('com.anemll.context_length', 512)) metadata['state_length'] = int(meta.get('com.anemll.state_length', metadata['context_length'])) # Added state_length metadata['batch_size'] = int(meta.get('com.anemll.batch_size', 64)) metadata['lut_bits'] = int(meta.get('com.anemll.lut_bits', 0)) metadata['num_chunks'] = int(meta.get('com.anemll.num_chunks', 1)) print("\nExtracted Parameters:") print(f" Context Length: {metadata['context_length']}") print(f" State Length: {metadata['state_length']}") print(f" Prefill Batch Size: {metadata['batch_size']}") print(f" LUT Bits: {metadata['lut_bits']}") print(f" Number of Chunks: {metadata['num_chunks']}") # Print model info print("\nModel Info:") if 'com.anemll.info' in meta: print(f" {meta['com.anemll.info']}") if 'com.github.apple.coremltools.version' in meta: print(f" CoreML Tools: {meta['com.github.apple.coremltools.version']}") # Print model input/output shapes print("\nModel Shapes:") if hasattr(model, 'input_description'): print(" Inputs:") for name, desc in model.input_description.items(): print(f" {name}: {desc}") if hasattr(model, 'output_description'): print(" Outputs:") for name, desc in model.output_description.items(): print(f" {name}: {desc}") else: print("\nWarning: No metadata found in model") # Check if model directory name contains context length pattern (ctxXXX) ctx_len = 512 if args.context_length is None: import re ctx_match = re.search(r'ctx(\d+)', str(args.d)) if ctx_match: ctx_len0 = int(ctx_match.group(1)) if 512 <= ctx_len0 <= 8096: ctx_len = ctx_len0 print(f"\nDetected context length {ctx_len} from directory name") else: print(f"\nWarning: No context length found in directory {ctx_len} from directory name {args.d}") else: ctx_len = args.context_length # Use defaults metadata['context_length'] = ctx_len metadata['state_length'] = ctx_len metadata['batch_size'] = 64 metadata['lut_bits'] = 4 metadata['num_chunks'] = 4 print("\nUsing default parameters:") print(f" Context Length: {metadata['context_length']}") print(f" State Length: {metadata['state_length']}") print(f" Prefill Batch Size: {metadata['batch_size']}") print(f" LUT Bits: {metadata['lut_bits']}") print(f" Number of Chunks: {metadata['num_chunks']}") return metadata def load_models(args,metadata): """Load all required models and extract metadata.""" print("\nLoading models...") try: # Load embeddings model print("\nLoading embeddings model...") embed_path = parse_model_path(args.embed) print(f"Loading from: {embed_path}") embed_model = load_model(embed_path) print("Embeddings model loaded successfully") metadata = load_metadata(embed_model,args) # Load LM head model print("\nLoading LM head model...") lmhead_path = parse_model_path(args.lmhead) print(f"Loading from: {lmhead_path}") lmhead_model = load_model(lmhead_path) print("LM head model loaded successfully") # Parse FFN path and find chunks if needed print("\nLoading FFN+PREFILL model(s)...") ffn_path = parse_model_path(args.ffn) chunk_no, total_chunks = parse_ffn_filename(ffn_path) ffn_models = [] if chunk_no and total_chunks: print(f"\nDetected chunked FFN+PREFILL model ({total_chunks} chunks)") # Find and load all chunks chunk_paths = find_all_chunks(ffn_path) if len(chunk_paths) != total_chunks: raise ValueError(f"Found {len(chunk_paths)} chunks but filename indicates {total_chunks} chunks") for chunk_path in chunk_paths: print(f"\nLoading FFN+PREFILL chunk: {Path(chunk_path).name}") try: # For chunked models, we need both infer and prefill functions ffn_models.append({ 'infer': load_model(chunk_path, function_name='infer'), 'prefill': load_model(chunk_path, function_name='prefill') }) print("Chunk loaded successfully") except Exception as e: print(f"Error loading chunk {chunk_path}: {str(e)}") raise metadata = load_metadata(ffn_models[0],args) else: print("\nLoading single FFN model...") ffn_models.append(load_model(ffn_path)) print("FFN model loaded successfully") return embed_model, ffn_models, lmhead_model, metadata except Exception as e: print(f"\nError loading models: {str(e)}") print("\nPlease ensure all model files exist and are accessible.") print("Expected files:") print(f" Embeddings: {args.embed}") print(f" LM Head: {args.lmhead}") print(f" FFN: {args.ffn}") raise # At the top of the file, make this a default path def initialize_tokenizer(model_path=None): """Initialize and configure the tokenizer.""" try: tokenizer = AutoTokenizer.from_pretrained( str(model_path), use_fast=False, trust_remote_code=True ) print("\nTokenizer Configuration:") print(f"Tokenizer type: {type(tokenizer)}") print(f"Tokenizer name: {tokenizer.__class__.__name__}") print(f"Vocabulary size: {len(tokenizer)}") print(f"Model max length: {tokenizer.model_max_length}") if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token tokenizer.pad_token_id = tokenizer.eos_token_id print("Set PAD token to EOS token") tokenizer.padding_side = "left" print(f"\nSpecial Tokens:") print(f"PAD token: '{tokenizer.pad_token}' (ID: {tokenizer.pad_token_id})") print(f"EOS token: '{tokenizer.eos_token}' (ID: {tokenizer.eos_token_id})") print(f"BOS token: '{tokenizer.bos_token}' (ID: {tokenizer.bos_token_id})") print(f"UNK token: '{tokenizer.unk_token}' (ID: {tokenizer.unk_token_id})") return tokenizer except Exception as e: print(f"\nError: Failed to load tokenizer from {model_path}") print(f"Error details: {str(e)}") print(f"Error type: {type(e)}") print("\nThis code requires a Llama 3.2 model for chat template functionality.") print("Please provide the path to a Llama 3.2 model directory.") import traceback traceback.print_exc() raise def make_causal_mask(length, start): """Create causal attention mask.""" mask = np.full((1, 1, length, length), -np.inf, dtype=np.float16) row_indices = np.arange(length).reshape(length, 1) col_indices = np.arange(length).reshape(1, length) mask[:, :, col_indices <= (row_indices + start)] = 0 return mask def run_prefill(embed_model, ffn_models, input_ids, context_pos, context_length, batch_size=64, state=None): """Run prefill on the input sequence.""" # Create causal mask causal_mask = make_causal_mask(context_length, 0) causal_mask = torch.tensor(causal_mask, dtype=torch.float16) # Process in batches batch_pos = 0 while batch_pos < context_pos: batch_end = min(batch_pos + batch_size, context_pos) current_batch_size = batch_end - batch_pos # Get current batch batch_input = input_ids[:, batch_pos:batch_end] # Always pad to full batch size for prefill batch_input = F.pad( batch_input, (0, batch_size - current_batch_size), value=0 ) # Generate position IDs for full batch size position_ids = torch.arange(batch_size, dtype=torch.int32) # Changed: Always use full batch size batch_causal_mask = causal_mask[:, :, :batch_size, :] # Changed: Use full batch size # Run embeddings hidden_states = torch.from_numpy( embed_model.predict({'input_ids': batch_input.numpy()})['hidden_states'] ) # Run through FFN chunks with state for ffn_model in ffn_models: if isinstance(ffn_model, dict): inputs = { 'hidden_states': hidden_states.numpy(), # [1, 64, hidden_size] 'position_ids': position_ids.numpy(), # [64] 'causal_mask': batch_causal_mask.numpy(), # [1, 1, 64, context_length] 'current_pos': np.array([batch_pos], dtype=np.int32) # [1] } output = ffn_model['prefill'].predict(inputs, state) hidden_states = torch.from_numpy(output['output_hidden_states']) batch_pos = batch_end return torch.tensor([context_pos], dtype=torch.int32) def generate_next_token(embed_model, ffn_models, lmhead_model, input_ids, pos, context_length, state=None, temperature=0.0): """Generate the next token.""" # Get current token current_token = input_ids[:, pos-1:pos] # [1, 1] # Run embeddings hidden_states = torch.from_numpy( embed_model.predict({'input_ids': current_token.numpy()})['hidden_states'] ) # [1, 1, hidden_size] # Create masks update_mask = torch.zeros((1, 1, context_length, 1), dtype=torch.float16) update_mask[0, 0, pos-1, 0] = 1.0 position_ids = torch.tensor([pos-1], dtype=torch.int32) # [1] causal_mask = make_causal_mask(context_length, 0) causal_mask = torch.tensor(causal_mask[:, :, pos-1:pos, :], dtype=torch.float16) # [1, 1, 1, context_length] # Run through FFN chunks with state for ffn_model in ffn_models: if isinstance(ffn_model, dict): inputs = { 'hidden_states': hidden_states.numpy(), 'update_mask': update_mask.numpy(), 'position_ids': position_ids.numpy(), 'causal_mask': causal_mask.numpy(), 'current_pos': position_ids.numpy() } output = ffn_model['infer'].predict(inputs, state) hidden_states = torch.from_numpy(output['output_hidden_states']) # Run LM head lm_output = lmhead_model.predict({'hidden_states': hidden_states.numpy()}) # Debug print #print("\nLM Head output keys:", list(lm_output.keys())) # Combine logits1-8 if they exist if 'logits1' in lm_output: # Concatenate all logits parts logits_parts = [] for i in range(1, 9): key = f'logits{i}' if key in lm_output: logits_parts.append(torch.from_numpy(lm_output[key])) logits = torch.cat(logits_parts, dim=-1) # Concatenate along vocab dimension else: # Try output_logits as fallback logits = torch.from_numpy(lm_output['output_logits']) # Apply temperature and sample if temperature > 0: logits = logits / temperature probs = F.softmax(logits[0, -1, :], dim=-1) next_token = torch.multinomial(probs, num_samples=1).item() else: next_token = torch.argmax(logits[0, -1, :]).item() return next_token def create_unified_state(ffn_models, context_length): """Create unified KV cache state for transformer.""" if isinstance(ffn_models[0], dict): # Use first FFN model's prefill function to create state state = ffn_models[0]['prefill'].make_state() print(f"\nCreated unified transformer state for {len(ffn_models)} chunks") return state else: state = ffn_models[0].make_state() print("\nCreated unified transformer state") return state def chat_loop(embed_model, ffn_models, lmhead_model, tokenizer, metadata, state, auto_prompt=None, warmup=False): """Interactive chat loop.""" context_length = metadata.get('context_length') batch_size = metadata.get('batch_size', 64) if not warmup: print(f"\nUsing context length: {context_length}") print("\nStarting chat session. Press Ctrl+D to exit.") print("Type your message and press Enter to chat.") # Check if tokenizer has chat template and if it works has_chat_template = False try: # Test if chat template works test_messages = [{"role": "user", "content": "test"}] tokenizer.apply_chat_template(test_messages, return_tensors="pt") has_chat_template = True if not warmup: print("\nUsing chat template for prompts") except: if not warmup: print("\nUsing manual formatting for prompts") conversation = [] try: while True: try: if not warmup: print(f"\n{LIGHT_GREEN}You:{RESET_COLOR}", end=' ', flush=True) if auto_prompt is not None: user_input = auto_prompt if not warmup: print(user_input) else: user_input = input().strip() except EOFError: if not warmup: print("\nExiting chat...") break if not user_input: continue # Format prompt based on tokenizer capabilities if has_chat_template: messages = [{"role": "user", "content": user_input}] input_ids = tokenizer.apply_chat_template( messages, return_tensors="pt", add_generation_prompt=True ).to(torch.int32) else: # Manual formatting for Llama models without chat template formatted_prompt = f"[INST] {user_input} [/INST]" input_ids = tokenizer( formatted_prompt, return_tensors="pt", add_special_tokens=True ).input_ids.to(torch.int32) context_pos = input_ids.size(1) if not warmup: print(f"\n{LIGHT_BLUE}Assistant:{RESET_COLOR}", end=' ', flush=True) # Initialize token printer token_printer = TokenPrinter(tokenizer) tokens_generated = 0 # Track number of tokens try: # Start prefill timing prefill_start = time.time() # Run prefill with state current_pos = run_prefill( embed_model, ffn_models, input_ids, context_pos, context_length, batch_size, state ) # Calculate prefill timing prefill_time = time.time() - prefill_start prefill_tokens = context_pos # Number of tokens in input prefill_tokens_per_sec = prefill_tokens / prefill_time if prefill_time > 0 else 0 # Generation loop with state input_ids = input_ids pos = context_pos inference_start = time.time() inference_tokens = 0 while pos < context_length - 1: # Generate next token next_token = generate_next_token( embed_model, ffn_models, lmhead_model, input_ids, pos, context_length, state ) # Add token to sequence if pos < input_ids.size(1): input_ids[0, pos] = next_token else: input_ids = torch.cat([ input_ids, torch.tensor([[next_token]], dtype=torch.int32) ], dim=1) # Add to printer only if not in warmup if not warmup: token_printer.add_token(next_token) token_printer.drain_buffer() pos += 1 tokens_generated += 1 inference_tokens += 1 # Check limits if warmup and tokens_generated >= WARMUP_TOKEN_LIMIT: break if next_token == tokenizer.eos_token_id: break # Calculate inference timing inference_time = time.time() - inference_start inference_tokens_per_sec = inference_tokens / inference_time if inference_time > 0 else 0 # Get final response and add to conversation if not warmup: response = token_printer.stop() # Print timing stats prefill_ms = prefill_time * 1000 # Convert to milliseconds print(f"\nPrefill: {prefill_ms:.1f}ms ({prefill_tokens_per_sec:.1f} t/s)") print(f"Inference: {inference_tokens_per_sec:.1f} t/s") print(f"Total: Generated {tokens_generated} tokens in {prefill_time + inference_time:.2f}s") conversation.append({"role": "assistant", "content": response}) else: token_printer.stop() # Clean up without printing stats # Exit after one response in auto_prompt mode if auto_prompt is not None: break except KeyboardInterrupt: print("\nGeneration interrupted") token_printer.stop() continue except Exception as e: print(f"\nError in chat loop: {str(e)}") import traceback traceback.print_exc() def parse_args(): parser = argparse.ArgumentParser(description='Chat with CoreML LLaMA (c) 2025 Anemll') # Add meta.yaml option parser.add_argument('--meta', type=str, help='Path to meta.yaml to load all parameters') # Model paths parser.add_argument('--d', '--dir', type=str, default='.', help='Directory containing model files (default: current directory)') parser.add_argument('--embed', type=str, required=False, help='Path to embeddings model (relative to --dir)') parser.add_argument('--ffn', type=str, required=False, help='Path to FFN model (can be chunked, relative to --dir)') parser.add_argument('--lmhead', type=str, required=False, help='Path to LM head model (relative to --dir)') parser.add_argument('--tokenizer', type=str, required=False, help='Path to tokenizer') # Add new argument for auto-generation parser.add_argument('--prompt', type=str, help='If specified, run once with this prompt and exit') # Model configuration parser.add_argument('--context-length', type=int, help='Context length for the model (default: 512), if not provided, it will be detected from the model directory name ctxNUMBER') args = parser.parse_args() # If meta.yaml is provided, load parameters from it if args.meta: try: with open(args.meta, 'r') as f: meta = yaml.safe_load(f) params = meta['model_info']['parameters'] # Set model directory to meta.yaml directory if not specified if not args.d or args.d == '.': args.d = str(Path(args.meta).parent) # Build model paths based on parameters prefix = params.get('model_prefix', 'llama') # Default to 'llama' if not specified lut_ffn = f"_lut{params['lut_ffn']}" if params['lut_ffn'] != 'none' else '' lut_lmhead = f"_lut{params['lut_lmhead']}" if params['lut_lmhead'] != 'none' else '' num_chunks = int(params['num_chunks']) # Set model paths if not specified if not args.embed: args.embed = f'{prefix}_embeddings' if not args.lmhead: args.lmhead = f'{prefix}_lm_head{lut_lmhead}' if not args.ffn: args.ffn = f'{prefix}_FFN_PF{lut_ffn}_chunk_01of{num_chunks:02d}' if not args.tokenizer: args.tokenizer = args.d # Set other parameters args.context_length = int(params['context_length']) args.batch_size = int(params['batch_size']) args.num_chunks = num_chunks print(f"\nLoaded parameters from {args.meta}:") print(f" Context Length: {args.context_length}") print(f" Batch Size: {args.batch_size}") print(f" Num Chunks: {args.num_chunks}") print(f" Models Directory: {args.d}") print(f" Embeddings: {args.embed}") print(f" LM Head: {args.lmhead}") print(f" FFN: {args.ffn}") except Exception as e: print(f"\nError loading meta.yaml: {str(e)}") sys.exit(1) return args def main(): args = parse_args() # Convert directory to absolute path model_dir = Path(args.d).resolve() if not model_dir.exists(): print(f"\nError: Model directory not found: {model_dir}") return 1 print(f"\nUsing model directory: {model_dir}") print(f"Context length: {args.context_length}") try: # Update paths to be relative to model directory args.embed = str(model_dir / args.embed) args.ffn = str(model_dir / args.ffn) args.lmhead = str(model_dir / args.lmhead) # Handle tokenizer path separately since it's not relative to model_dir if args.tokenizer is None: args.tokenizer = str(model_dir) if not Path(args.tokenizer).exists(): print(f"\nError: Tokenizer directory not found: {args.tokenizer}") return 1 args.tokenizer = str(Path(args.tokenizer).resolve()) # Convert to absolute path print(f"Using tokenizer path: {args.tokenizer}") metadata = {} # Load models and extract metadata embed_model, ffn_models, lmhead_model, metadata = load_models(args,metadata) print(f"\nMetadata befor args.context_length: {metadata}") # Override context length from command line if provided if args.context_length is not None: metadata['context_length'] = args.context_length metadata['state_length'] = args.context_length # Also update state_length print(f"\nOverriding context length from command line: {args.context_length}") print(f"\nMetadata after load_models: {metadata}") # Load tokenizer with resolved path tokenizer = initialize_tokenizer(args.tokenizer) if tokenizer is None: raise RuntimeError("Failed to initialize tokenizer") # Create unified state once state = create_unified_state(ffn_models, metadata['context_length']) # Warmup runs to prevent Python GIL issues with CoreML ! for i in range(2): chat_loop( embed_model=embed_model, ffn_models=ffn_models, lmhead_model=lmhead_model, tokenizer=tokenizer, metadata=metadata, state=state, warmup=True, auto_prompt="who are you?" ) # Main run chat_loop( embed_model=embed_model, ffn_models=ffn_models, lmhead_model=lmhead_model, tokenizer=tokenizer, metadata=metadata, state=state, warmup=False, auto_prompt=args.prompt ) except Exception as e: print(f"\nError: {str(e)}") import traceback traceback.print_exc() return 1 return 0 if __name__ == "__main__": exit(main())