--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-base results: [] --- # vit-base This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3177 - Accuracy: 0.4987 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.6698 | 1.0 | 48 | 1.5900 | 0.2539 | | 1.4981 | 2.0 | 96 | 1.4551 | 0.3835 | | 1.2747 | 3.0 | 144 | 1.3591 | 0.4408 | | 1.0701 | 4.0 | 192 | 1.3058 | 0.4902 | | 0.7885 | 5.0 | 240 | 1.3177 | 0.4987 | | 0.6023 | 6.0 | 288 | 1.3985 | 0.4870 | | 0.4814 | 7.0 | 336 | 1.4607 | 0.4824 | | 0.3708 | 8.0 | 384 | 1.5195 | 0.4720 | | 0.2755 | 9.0 | 432 | 1.5524 | 0.4798 | | 0.2476 | 10.0 | 480 | 1.5632 | 0.4792 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Tokenizers 0.19.1