--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-qnli results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: qnli metrics: - name: Accuracy type: accuracy value: 0.8004759289767527 --- # bert-base-uncased-finetuned-qnli This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5008 - Accuracy: 0.8005 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 63 | 0.6230 | 0.7258 | | No log | 2.0 | 126 | 0.4681 | 0.7906 | | No log | 3.0 | 189 | 0.4536 | 0.7986 | | No log | 4.0 | 252 | 0.5008 | 0.8005 | | No log | 5.0 | 315 | 0.5254 | 0.7996 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3