Update retrieval_qa_pipeline.py
Browse files- retrieval_qa_pipeline.py +18 -20
retrieval_qa_pipeline.py
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
-
# retrieval_qa_pipeline.py
|
2 |
-
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
4 |
from langchain.embeddings import HuggingFaceEmbeddings
|
5 |
from langchain.vectorstores import FAISS
|
@@ -10,26 +8,26 @@ from datasets import load_dataset
|
|
10 |
def load_model_and_tokenizer(model_name: str):
|
11 |
"""
|
12 |
Load the pre-trained model and tokenizer from the Hugging Face Hub.
|
13 |
-
|
14 |
Args:
|
15 |
model_name (str): The Hugging Face repository name of the model.
|
16 |
-
|
17 |
Returns:
|
18 |
model: The loaded model.
|
19 |
tokenizer: The loaded tokenizer.
|
20 |
"""
|
21 |
print(f"Loading model and tokenizer from {model_name}...")
|
22 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
23 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
24 |
return model, tokenizer
|
25 |
|
26 |
def load_dataset_from_hf(dataset_name: str):
|
27 |
"""
|
28 |
Load the dataset from the Hugging Face Hub.
|
29 |
-
|
30 |
Args:
|
31 |
dataset_name (str): The Hugging Face repository name of the dataset.
|
32 |
-
|
33 |
Returns:
|
34 |
texts (list): The text descriptions from the dataset.
|
35 |
metadatas (list): Metadata for each text (e.g., upf_code).
|
@@ -43,27 +41,27 @@ def load_dataset_from_hf(dataset_name: str):
|
|
43 |
def load_faiss_index(faiss_index_path: str):
|
44 |
"""
|
45 |
Load the FAISS index and associated embeddings.
|
46 |
-
|
47 |
Args:
|
48 |
faiss_index_path (str): Path to the saved FAISS index.
|
49 |
-
|
50 |
Returns:
|
51 |
vectorstore (FAISS): The FAISS vector store.
|
52 |
"""
|
53 |
print(f"Loading FAISS index from {faiss_index_path}...")
|
54 |
embeddings = HuggingFaceEmbeddings() # Default embeddings
|
55 |
-
vectorstore = FAISS.load_local(faiss_index_path, embeddings)
|
56 |
return vectorstore
|
57 |
|
58 |
def build_retrieval_qa_pipeline(model, tokenizer, vectorstore):
|
59 |
"""
|
60 |
Build the retrieval-based QA pipeline.
|
61 |
-
|
62 |
Args:
|
63 |
model: The pre-trained model.
|
64 |
tokenizer: The tokenizer associated with the model.
|
65 |
vectorstore (FAISS): The FAISS vector store for retrieval.
|
66 |
-
|
67 |
Returns:
|
68 |
qa_chain (RetrievalQA): The retrieval-based QA pipeline.
|
69 |
"""
|
@@ -77,11 +75,11 @@ def build_retrieval_qa_pipeline(model, tokenizer, vectorstore):
|
|
77 |
top_p=0.95,
|
78 |
repetition_penalty=1.15
|
79 |
)
|
80 |
-
|
81 |
llm = HuggingFacePipeline(pipeline=hf_pipeline)
|
82 |
retriever = vectorstore.as_retriever()
|
83 |
qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever)
|
84 |
-
|
85 |
return qa_chain
|
86 |
|
87 |
def main():
|
@@ -89,21 +87,21 @@ def main():
|
|
89 |
model_name = "anirudh248/upf_code_generator_final"
|
90 |
dataset_name = "PranavKeshav/upf_dataset"
|
91 |
faiss_index_path = "faiss_index"
|
92 |
-
|
93 |
print("Starting pipeline setup...")
|
94 |
-
|
95 |
# Load model and tokenizer
|
96 |
model, tokenizer = load_model_and_tokenizer(model_name)
|
97 |
-
|
98 |
# Load dataset
|
99 |
texts, metadatas = load_dataset_from_hf(dataset_name)
|
100 |
-
|
101 |
# Load FAISS index
|
102 |
vectorstore = load_faiss_index(faiss_index_path)
|
103 |
-
|
104 |
# Build QA pipeline
|
105 |
qa_chain = build_retrieval_qa_pipeline(model, tokenizer, vectorstore)
|
106 |
-
|
107 |
# Test the pipeline
|
108 |
print("Pipeline is ready! You can now ask questions.")
|
109 |
while True:
|
|
|
|
|
|
|
1 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
2 |
from langchain.embeddings import HuggingFaceEmbeddings
|
3 |
from langchain.vectorstores import FAISS
|
|
|
8 |
def load_model_and_tokenizer(model_name: str):
|
9 |
"""
|
10 |
Load the pre-trained model and tokenizer from the Hugging Face Hub.
|
11 |
+
|
12 |
Args:
|
13 |
model_name (str): The Hugging Face repository name of the model.
|
14 |
+
|
15 |
Returns:
|
16 |
model: The loaded model.
|
17 |
tokenizer: The loaded tokenizer.
|
18 |
"""
|
19 |
print(f"Loading model and tokenizer from {model_name}...")
|
20 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
|
21 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
22 |
return model, tokenizer
|
23 |
|
24 |
def load_dataset_from_hf(dataset_name: str):
|
25 |
"""
|
26 |
Load the dataset from the Hugging Face Hub.
|
27 |
+
|
28 |
Args:
|
29 |
dataset_name (str): The Hugging Face repository name of the dataset.
|
30 |
+
|
31 |
Returns:
|
32 |
texts (list): The text descriptions from the dataset.
|
33 |
metadatas (list): Metadata for each text (e.g., upf_code).
|
|
|
41 |
def load_faiss_index(faiss_index_path: str):
|
42 |
"""
|
43 |
Load the FAISS index and associated embeddings.
|
44 |
+
|
45 |
Args:
|
46 |
faiss_index_path (str): Path to the saved FAISS index.
|
47 |
+
|
48 |
Returns:
|
49 |
vectorstore (FAISS): The FAISS vector store.
|
50 |
"""
|
51 |
print(f"Loading FAISS index from {faiss_index_path}...")
|
52 |
embeddings = HuggingFaceEmbeddings() # Default embeddings
|
53 |
+
vectorstore = FAISS.load_local(faiss_index_path, embeddings, allow_dangerous_deserialization=True)
|
54 |
return vectorstore
|
55 |
|
56 |
def build_retrieval_qa_pipeline(model, tokenizer, vectorstore):
|
57 |
"""
|
58 |
Build the retrieval-based QA pipeline.
|
59 |
+
|
60 |
Args:
|
61 |
model: The pre-trained model.
|
62 |
tokenizer: The tokenizer associated with the model.
|
63 |
vectorstore (FAISS): The FAISS vector store for retrieval.
|
64 |
+
|
65 |
Returns:
|
66 |
qa_chain (RetrievalQA): The retrieval-based QA pipeline.
|
67 |
"""
|
|
|
75 |
top_p=0.95,
|
76 |
repetition_penalty=1.15
|
77 |
)
|
78 |
+
|
79 |
llm = HuggingFacePipeline(pipeline=hf_pipeline)
|
80 |
retriever = vectorstore.as_retriever()
|
81 |
qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever)
|
82 |
+
|
83 |
return qa_chain
|
84 |
|
85 |
def main():
|
|
|
87 |
model_name = "anirudh248/upf_code_generator_final"
|
88 |
dataset_name = "PranavKeshav/upf_dataset"
|
89 |
faiss_index_path = "faiss_index"
|
90 |
+
|
91 |
print("Starting pipeline setup...")
|
92 |
+
|
93 |
# Load model and tokenizer
|
94 |
model, tokenizer = load_model_and_tokenizer(model_name)
|
95 |
+
|
96 |
# Load dataset
|
97 |
texts, metadatas = load_dataset_from_hf(dataset_name)
|
98 |
+
|
99 |
# Load FAISS index
|
100 |
vectorstore = load_faiss_index(faiss_index_path)
|
101 |
+
|
102 |
# Build QA pipeline
|
103 |
qa_chain = build_retrieval_qa_pipeline(model, tokenizer, vectorstore)
|
104 |
+
|
105 |
# Test the pipeline
|
106 |
print("Pipeline is ready! You can now ask questions.")
|
107 |
while True:
|