File size: 1,829 Bytes
ba66a96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---

license: apache-2.0
base_model: distilbert/distilbert-base-multilingual-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: NEW_trained_danish
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# NEW_trained_danish

This model is a fine-tuned version of [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0636
- Precision: 0.7733
- Recall: 0.7394
- F1: 0.7559
- Accuracy: 0.9807

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05

- train_batch_size: 8

- eval_batch_size: 8

- seed: 42

- gradient_accumulation_steps: 2

- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2



### Training results



| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |

|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|

| No log        | 1.0   | 274  | 0.0654          | 0.7426    | 0.7406 | 0.7416 | 0.9799   |

| 0.099         | 2.0   | 548  | 0.0636          | 0.7733    | 0.7394 | 0.7559 | 0.9807   |





### Framework versions



- Transformers 4.38.2

- Pytorch 2.1.2+cu118

- Datasets 2.18.0

- Tokenizers 0.15.2