--- license: apache-2.0 language: - en pipeline_tag: text-generation tags: - chat --- ## This repo contains EXL2 quants of the model. If you need the original weights, please find them [here](https://huggingface.co/anthracite-org/magnum-v2-4b). ## Base repo only contains the measurement file, see revisions for your quant of choice. - [measurement.json](https://huggingface.co/anthracite-org/magnum-v2-4b-exl2/tree/main) - [3.0bpw](https://huggingface.co/anthracite-org/magnum-v2-4b-exl2/tree/3.0bpw) - [4.0bpw](https://huggingface.co/anthracite-org/magnum-v2-4b-exl2/tree/4.0bpw) - [5.0bpw](https://huggingface.co/anthracite-org/magnum-v2-4b-exl2/tree/5.0bpw) - [6.0bpw](https://huggingface.co/anthracite-org/magnum-v2-4b-exl2/tree/6.0bpw) - [8.0bpw](https://huggingface.co/anthracite-org/magnum-v2-4b-exl2/tree/8.0bpw) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/658a46cbfb9c2bdfae75b3a6/9JwXZze4tHRGpc_RzE2AU.png) This is the eighth in a series of models designed to replicate the prose quality of the Claude 3 models, specifically Sonnet and Opus. This model is fine-tuned on top of [IntervitensInc/Llama-3.1-Minitron-4B-Width-Base-chatml](https://huggingface.co/IntervitensInc/Llama-3.1-Minitron-4B-Width-Base-chatml). ## Prompting Model has been Instruct tuned with the ChatML formatting. A typical input would look like this: ```py """<|im_start|>system system prompt<|im_end|> <|im_start|>user Hi there!<|im_end|> <|im_start|>assistant Nice to meet you!<|im_end|> <|im_start|>user Can I ask a question?<|im_end|> <|im_start|>assistant """ ``` ## axolotl config
See axolotl config axolotl version: `0.4.1` ```yaml base_model: IntervitensInc/Llama-3.1-Minitron-4B-Width-Base-chatml model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false datasets: - path: anthracite-org/Gryphe-3.5-16k-Subset type: sharegpt conversation: chatml - path: Epiculous/Synthstruct-Gens-v1-Filtered-n-Cleaned type: sharegpt conversation: chatml - path: anthracite-org/Stheno-Data-Filtered type: sharegpt conversation: chatml - path: Epiculous/SynthRP-Gens-v1-Filtered-n-Cleaned type: sharegpt conversation: chatml - path: lodrick-the-lafted/NopmWritingStruct type: sharegpt conversation: chatml - path: anthracite-org/kalo-opus-instruct-22k-no-refusal type: sharegpt conversation: chatml chat_template: chatml val_set_size: 0.01 output_dir: ./outputs/out adapter: lora_r: lora_alpha: lora_dropout: lora_target_linear: sequence_len: 16384 # sequence_len: 32768 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 32 micro_batch_size: 1 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.00002 weight_decay: 0.05 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: true gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_ratio: 0.1 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: fsdp: fsdp_config: special_tokens: pad_token: <|finetune_right_pad_id|> ```

## Credits - [anthracite-org/Stheno-Data-Filtered](https://huggingface.co/datasets/anthracite-org/Stheno-Data-Filtered) - [anthracite-org/kalo-opus-instruct-22k-no-refusal](https://huggingface.co/datasets/anthracite-org/kalo-opus-instruct-22k-no-refusal) - [lodrick-the-lafted/NopmWritingStruct](https://huggingface.co/datasets/lodrick-the-lafted/NopmWritingStruct) - [NewEden/Gryphe-3.5-16k-Subset](NewEden/Gryphe-3.5-16k-Subset) - [Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned](https://huggingface.co/datasets/Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned) - [Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned](https://huggingface.co/datasets/Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned) This model has been a team effort, and the credits goes to all members of Anthracite. ## Training The training was done for 2 epochs. We used 2 x [RTX 6000s](https://store.nvidia.com/en-us/nvidia-rtx/products/nvidia-rtx-6000-ada-generation/) GPUs graciously provided by [Kubernetes_Bad](https://huggingface.co/kubernetes-bad) for the full-parameter fine-tuning of the model. [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) ## Safety ...