File size: 8,311 Bytes
81d2cdb
704f2cc
 
9364731
 
81d2cdb
704f2cc
 
9364731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3200513
 
9364731
 
 
 
 
 
 
 
 
 
 
 
 
 
3200513
 
9364731
 
 
 
 
 
 
 
 
 
 
 
 
 
3200513
 
9364731
 
 
 
 
 
 
 
 
 
 
 
 
 
3200513
 
9364731
 
 
 
 
 
 
 
 
 
 
 
 
 
3200513
 
9364731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3200513
 
9364731
3200513
 
 
 
 
 
 
81d2cdb
 
 
704f2cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81d2cdb
 
 
 
 
 
 
704f2cc
81d2cdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
704f2cc
81d2cdb
704f2cc
81d2cdb
704f2cc
81d2cdb
 
 
704f2cc
81d2cdb
704f2cc
81d2cdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
704f2cc
 
81d2cdb
704f2cc
81d2cdb
704f2cc
 
 
 
 
 
 
81d2cdb
704f2cc
 
81d2cdb
704f2cc
81d2cdb
704f2cc
9364731
 
 
 
 
 
 
 
 
 
 
 
3200513
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- chat
pipeline_tag: text-generation
model-index:
- name: magnum-v4-12b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 33.93
      name: strict accuracy
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v4-12b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 30.5
      name: normalized accuracy
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v4-12b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 9.82
      name: exact match
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v4-12b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 6.15
      name: acc_norm
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v4-12b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 10.36
      name: acc_norm
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v4-12b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 28.93
      name: accuracy
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v4-12b
      name: Open LLM Leaderboard
datasets:
- anthracite-org/c2_logs_32k_llama3_qwen2_v1.2_no_system
- anthracite-org/kalo-opus-instruct-22k-no-refusal-no-system
- anthracite-org/kalo-opus-instruct-3k-filtered-no-system
- anthracite-org/nopm_claude_writing_fixed
- anthracite-org/kalo_opus_misc_240827_no_system
- anthracite-org/kalo_misc_part2_no_system
---


![image/png](https://cdn-uploads.huggingface.co/production/uploads/658a46cbfb9c2bdfae75b3a6/-UC6YN1Gt3e1FDh8EqyaB.png)


This is a series of models designed to replicate the prose quality of the Claude 3 models, specifically Sonnet and Opus.



This model is fine-tuned on top of [mistralai/Mistral-Nemo-Instruct-2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407).

## Prompting
A typical input would look like this:

```py
<s>[INST] SYSTEM MESSAGE
USER MESSAGE[/INST] ASSISTANT MESSAGE</s>[INST] USER MESSAGE[/INST]
```

## SillyTavern templates

Below are Instruct and Context templates for use within SillyTavern.

<details><summary>context template</summary>
  
```yaml
default SillyTavern template works fine
```

</details><br>
<details><summary>instruct template</summary>
  
```yaml
default SillyTavern template works fine
```

</details><br>

## Axolotl config

<details><summary>See axolotl config</summary>

```yaml
base_model: mistralai/Mistral-Nemo-Instruct-2407
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

hub_model_id: anthracite-org/magnum-v4-12b-r2
hub_strategy: "all_checkpoints"
push_dataset_to_hub:
hf_use_auth_token: true

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: anthracite-org/c2_logs_32k_llama3_qwen2_v1.2_no_system
    type: custommistralv3tekken
  - path: anthracite-org/kalo-opus-instruct-22k-no-refusal-no-system
    type: custommistralv3tekken
  - path: anthracite-org/kalo-opus-instruct-3k-filtered-no-system
    type: custommistralv3tekken
  - path: anthracite-org/nopm_claude_writing_fixed
    type: custommistralv3tekken
  - path: anthracite-org/kalo_opus_misc_240827_no_system
    type: custommistralv3tekken
  - path: anthracite-org/kalo_misc_part2_no_system
    type: custommistralv3tekken
#chat_template: chatml
shuffle_merged_datasets: true
#default_system_message: "You are an assistant that responds to the user."
dataset_prepared_path: /workspace/data/magnum-12b-data
val_set_size: 0.0
output_dir: /workspace/data/12b-fft-out

sequence_len: 32768
sample_packing: true
pad_to_sequence_len: true

adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:

wandb_project: 12b-magnum-fft
wandb_entity:
wandb_watch:
wandb_name: v4-r2-attempt-01
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00001

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 40
evals_per_epoch:
eval_table_size:
eval_max_new_tokens:
saves_per_epoch: 2
debug:
deepspeed: deepspeed_configs/zero2.json
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
  pad_token: <pad>
```
</details><br>

## Credits
We'd like to thank Recursal / Featherless for sponsoring the compute for this train, Featherless has been hosting our Magnum models since the first 72 B and has given thousands of people access to our models and helped us grow.

We would also like to thank all members of Anthracite who made this finetune possible. 

## Datasets
- [anthracite-org/c2_logs_32k_llama3_qwen2_v1.2_no_system](https://huggingface.co/datasets/anthracite-org/c2_logs_32k_llama3_qwen2_v1.2_no_system)
- [anthracite-org/kalo-opus-instruct-22k-no-refusal-no-system](https://huggingface.co/datasets/anthracite-org/kalo-opus-instruct-22k-no-refusal-no-system)
- [anthracite-org/kalo-opus-instruct-3k-filtered-no-system](https://huggingface.co/datasets/anthracite-org/kalo-opus-instruct-3k-filtered-no-system)
- [anthracite-org/nopm_claude_writing_fixed](https://huggingface.co/datasets/anthracite-org/nopm_claude_writing_fixed)
- [anthracite-org/kalo_opus_misc_240827_no_system](https://huggingface.co/datasets/anthracite-org/kalo_opus_misc_240827_no_system)
- [anthracite-org/kalo_misc_part2_no_system](https://huggingface.co/datasets/anthracite-org/kalo_misc_part2_no_system)

## Training
The training was done for 2 epochs. We used  8x[H100s](https://www.nvidia.com/en-us/data-center/h100/) GPUs graciously provided by [Recursal AI](https://recursal.ai/) / [Featherless AI](https://featherless.ai/) for the full-parameter fine-tuning of the model.

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)

## Safety
...
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_anthracite-org__magnum-v4-12b)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |19.95|
|IFEval (0-Shot)    |33.93|
|BBH (3-Shot)       |30.50|
|MATH Lvl 5 (4-Shot)| 9.82|
|GPQA (0-shot)      | 6.15|
|MuSR (0-shot)      |10.36|
|MMLU-PRO (5-shot)  |28.93|