antoinelouis
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -7,75 +7,102 @@ datasets:
|
|
7 |
metrics:
|
8 |
- recall
|
9 |
tags:
|
10 |
-
- sentence-similarity
|
11 |
- colbert
|
|
|
12 |
base_model: antoinelouis/camembert-L4
|
13 |
library_name: RAGatouille
|
14 |
inference: false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
---
|
16 |
|
17 |
-
#
|
18 |
|
19 |
This is a lightweight [ColBERTv2](https://doi.org/10.48550/arXiv.2112.01488) model for **French** that can be used for semantic search. It encodes queries and passages into matrices of token-level embeddings and efficiently finds passages that contextually match the query using scalable vector-similarity (MaxSim) operators.
|
20 |
|
21 |
## Usage
|
22 |
|
23 |
-
Here are some examples for using the model with [
|
24 |
|
25 |
-
### Using
|
26 |
|
27 |
First, you will need to install the following libraries:
|
28 |
|
29 |
```bash
|
30 |
-
pip install
|
31 |
```
|
32 |
|
33 |
Then, you can use the model like this:
|
34 |
|
35 |
```python
|
36 |
-
from
|
37 |
-
from colbert.infra import Run, RunConfig
|
38 |
|
39 |
-
n_gpu: int = 1 # Set your number of available GPUs
|
40 |
-
experiment: str = "colbert" # Name of the folder where the logs and created indices will be stored
|
41 |
index_name: str = "my_index" # The name of your index, i.e. the name of your vector database
|
42 |
documents: list = ["Ceci est un premier document.", "Voici un second document.", "etc."] # Corpus
|
43 |
|
44 |
-
# Step 1: Indexing.
|
45 |
-
|
46 |
-
|
47 |
-
indexer.index(name=index_name, collection=documents)
|
48 |
|
49 |
-
# Step 2: Searching.
|
50 |
-
|
51 |
-
|
52 |
-
results = searcher.search(query="Comment effectuer une recherche avec ColBERT ?", k=10)
|
53 |
-
# results: tuple of tuples of length k containing ((passage_id, passage_rank, passage_score), ...)
|
54 |
```
|
55 |
|
56 |
-
### Using
|
57 |
|
58 |
First, you will need to install the following libraries:
|
59 |
|
60 |
```bash
|
61 |
-
pip install -
|
62 |
```
|
63 |
|
64 |
Then, you can use the model like this:
|
65 |
|
66 |
```python
|
67 |
-
from
|
|
|
68 |
|
|
|
|
|
69 |
index_name: str = "my_index" # The name of your index, i.e. the name of your vector database
|
70 |
documents: list = ["Ceci est un premier document.", "Voici un second document.", "etc."] # Corpus
|
71 |
|
72 |
-
# Step 1: Indexing.
|
73 |
-
|
74 |
-
|
|
|
75 |
|
76 |
-
# Step 2: Searching.
|
77 |
-
|
78 |
-
|
|
|
|
|
79 |
```
|
80 |
|
81 |
***
|
|
|
7 |
metrics:
|
8 |
- recall
|
9 |
tags:
|
|
|
10 |
- colbert
|
11 |
+
- passage-retrieval
|
12 |
base_model: antoinelouis/camembert-L4
|
13 |
library_name: RAGatouille
|
14 |
inference: false
|
15 |
+
model-index:
|
16 |
+
- name: colbertv2-camembert-L4-mmarcoFR
|
17 |
+
results:
|
18 |
+
- task:
|
19 |
+
type: sentence-similarity
|
20 |
+
name: Passage Retrieval
|
21 |
+
dataset:
|
22 |
+
type: unicamp-dl/mmarco
|
23 |
+
name: mMARCO-fr
|
24 |
+
config: french
|
25 |
+
split: validation
|
26 |
+
metrics:
|
27 |
+
- type: recall_at_1000
|
28 |
+
name: Recall@1000
|
29 |
+
value: 91.9
|
30 |
+
- type: recall_at_500
|
31 |
+
name: Recall@500
|
32 |
+
value: 90.3
|
33 |
+
- type: recall_at_100
|
34 |
+
name: Recall@100
|
35 |
+
value: 81.9
|
36 |
+
- type: recall_at_10
|
37 |
+
name: Recall@10
|
38 |
+
value: 56.7
|
39 |
+
- type: mrr_at_10
|
40 |
+
name: MRR@10
|
41 |
+
value: 32.3
|
42 |
---
|
43 |
|
44 |
+
# colbertv2-camembert-L4-mmarcoFR
|
45 |
|
46 |
This is a lightweight [ColBERTv2](https://doi.org/10.48550/arXiv.2112.01488) model for **French** that can be used for semantic search. It encodes queries and passages into matrices of token-level embeddings and efficiently finds passages that contextually match the query using scalable vector-similarity (MaxSim) operators.
|
47 |
|
48 |
## Usage
|
49 |
|
50 |
+
Here are some examples for using the model with [RAGatouille](https://github.com/bclavie/RAGatouille) or [colbert-ai](https://github.com/stanford-futuredata/ColBERT).
|
51 |
|
52 |
+
### Using RAGatouille
|
53 |
|
54 |
First, you will need to install the following libraries:
|
55 |
|
56 |
```bash
|
57 |
+
pip install -U ragatouille
|
58 |
```
|
59 |
|
60 |
Then, you can use the model like this:
|
61 |
|
62 |
```python
|
63 |
+
from ragatouille import RAGPretrainedModel
|
|
|
64 |
|
|
|
|
|
65 |
index_name: str = "my_index" # The name of your index, i.e. the name of your vector database
|
66 |
documents: list = ["Ceci est un premier document.", "Voici un second document.", "etc."] # Corpus
|
67 |
|
68 |
+
# Step 1: Indexing.
|
69 |
+
RAG = RAGPretrainedModel.from_pretrained("antoinelouis/colbertv2-camembert-L4-mmarcoFR")
|
70 |
+
RAG.index(name=index_name, collection=documents)
|
|
|
71 |
|
72 |
+
# Step 2: Searching.
|
73 |
+
RAG = RAGPretrainedModel.from_index(index_name) # if not already loaded
|
74 |
+
RAG.search(query="Comment effectuer une recherche avec ColBERT ?", k=10)
|
|
|
|
|
75 |
```
|
76 |
|
77 |
+
### Using ColBERT-AI
|
78 |
|
79 |
First, you will need to install the following libraries:
|
80 |
|
81 |
```bash
|
82 |
+
pip install git+https://github.com/stanford-futuredata/ColBERT.git torch faiss-gpu==1.7.2
|
83 |
```
|
84 |
|
85 |
Then, you can use the model like this:
|
86 |
|
87 |
```python
|
88 |
+
from colbert import Indexer, Searcher
|
89 |
+
from colbert.infra import Run, RunConfig
|
90 |
|
91 |
+
n_gpu: int = 1 # Set your number of available GPUs
|
92 |
+
experiment: str = "colbert" # Name of the folder where the logs and created indices will be stored
|
93 |
index_name: str = "my_index" # The name of your index, i.e. the name of your vector database
|
94 |
documents: list = ["Ceci est un premier document.", "Voici un second document.", "etc."] # Corpus
|
95 |
|
96 |
+
# Step 1: Indexing. This step encodes all passages into matrices, stores them on disk, and builds data structures for efficient search.
|
97 |
+
with Run().context(RunConfig(nranks=n_gpu,experiment=experiment)):
|
98 |
+
indexer = Indexer(checkpoint="antoinelouis/colbertv2-camembert-L4-mmarcoFR")
|
99 |
+
indexer.index(name=index_name, collection=documents)
|
100 |
|
101 |
+
# Step 2: Searching. Given the model and index, you can issue queries over the collection to retrieve the top-k passages for each query.
|
102 |
+
with Run().context(RunConfig(nranks=n_gpu,experiment=experiment)):
|
103 |
+
searcher = Searcher(index=index_name) # You don't need to specify checkpoint again, the model name is stored in the index.
|
104 |
+
results = searcher.search(query="Comment effectuer une recherche avec ColBERT ?", k=10)
|
105 |
+
# results: tuple of tuples of length k containing ((passage_id, passage_rank, passage_score), ...)
|
106 |
```
|
107 |
|
108 |
***
|