--- pipeline_tag: text-classification language: fr license: mit datasets: - unicamp-dl/mmarco metrics: - recall tags: - passage-reranking library_name: sentence-transformers base_model: dbmdz/electra-base-french-europeana-cased-discriminator --- # crossencoder-electra-base-french-mmarcoFR This is a cross-encoder model for French. It performs cross-attention between a question-passage pair and outputs a relevance score. The model should be used as a reranker for semantic search: given a query and a set of potentially relevant passages retrieved by an efficient first-stage retrieval system (e.g., BM25 or a fine-tuned dense single-vector bi-encoder), encode each query-passage pair and sort the passages in a decreasing order of relevance according to the model's predicted scores. ## Usage Here are some examples for using the model with [Sentence-Transformers](#using-sentence-transformers), [FlagEmbedding](#using-flagembedding), or [Huggingface Transformers](#using-huggingface-transformers). #### Using Sentence-Transformers Start by installing the [library](https://www.SBERT.net): `pip install -U sentence-transformers`. Then, you can use the model like this: ```python from sentence_transformers import CrossEncoder pairs = [('Question', 'Paragraphe 1'), ('Question', 'Paragraphe 2') , ('Question', 'Paragraphe 3')] model = CrossEncoder('antoinelouis/crossencoder-electra-base-french-mmarcoFR') scores = model.predict(pairs) print(scores) ``` #### Using FlagEmbedding Start by installing the [library](https://github.com/FlagOpen/FlagEmbedding/): `pip install -U FlagEmbedding`. Then, you can use the model like this: ```python from FlagEmbedding import FlagReranker pairs = [('Question', 'Paragraphe 1'), ('Question', 'Paragraphe 2') , ('Question', 'Paragraphe 3')] reranker = FlagReranker('antoinelouis/crossencoder-electra-base-french-mmarcoFR') scores = reranker.compute_score(pairs) print(scores) ``` #### Using HuggingFace Transformers Start by installing the [library](https://huggingface.co/docs/transformers): `pip install -U transformers`. Then, you can use the model like this: ```python import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification pairs = [('Question', 'Paragraphe 1'), ('Question', 'Paragraphe 2') , ('Question', 'Paragraphe 3')] tokenizer = AutoTokenizer.from_pretrained('antoinelouis/crossencoder-electra-base-french-mmarcoFR') model = AutoModelForSequenceClassification.from_pretrained('antoinelouis/crossencoder-electra-base-french-mmarcoFR') model.eval() with torch.no_grad(): inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512) scores = model(**inputs, return_dict=True).logits.view(-1, ).float() print(scores) ``` *** ## Evaluation We evaluate the model on 500 random training queries from [mMARCO-fr](https://ir-datasets.com/mmarco.html#mmarco/v2/fr/) (which were excluded from training) by reranking subsets of candidate passages comprising of at least one relevant and up to 200 BM25 negative passages for each query. Below, we compare the model performance with other cross-encoder models fine-tuned on the same dataset. We report the R-precision (RP), mean reciprocal rank (MRR), and recall at various cut-offs (R@k). | | model | Vocab. | #Param. | Size | RP | MRR@10 | R@10(↑) | R@20 | R@50 | R@100 | |---:|:-----------------------------------------------------------------------------------------------------------------------------|:-------|--------:|------:|-------:|---------:|---------:|-------:|-------:|--------:| | 1 | [crossencoder-camembert-base-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-camembert-base-mmarcoFR) | fr | 110M | 443MB | 35.65 | 50.44 | 82.95 | 91.50 | 96.80 | 98.80 | | 2 | [crossencoder-mMiniLMv2-L12-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-mMiniLMv2-L12-mmarcoFR) | fr,99+ | 118M | 471MB | 34.37 | 51.01 | 82.23 | 90.60 | 96.45 | 98.40 | | 3 | [crossencoder-distilcamembert-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-distilcamembert-mmarcoFR) | fr | 68M | 272MB | 27.28 | 43.71 | 80.30 | 89.10 | 95.55 | 98.60 | | 4 | **crossencoder-electra-base-french-mmarcoFR** | fr | 110M | 443MB | 28.32 | 45.28 | 79.22 | 87.15 | 93.15 | 95.75 | | 5 | [crossencoder-mMiniLMv2-L6-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-mMiniLMv2-L6-mmarcoFR) | fr,99+ | 107M | 428MB | 33.92 | 49.33 | 79.00 | 88.35 | 94.80 | 98.20 | *** ## Training #### Data We use the French training samples from the [mMARCO](https://huggingface.co/datasets/unicamp-dl/mmarco) dataset, a multilingual machine-translated version of MS MARCO that contains 8.8M passages and 539K training queries. We sample 1M question-passage pairs from the official ~39.8M [training triples](https://microsoft.github.io/msmarco/Datasets.html#passage-ranking-dataset) with a positive-to-negative ratio of 4 (i.e., 25% of the pairs are relevant and 75% are irrelevant). #### Implementation The model is initialized from the [dbmdz/electra-base-french-europeana-cased-discriminator](https://huggingface.co/dbmdz/electra-base-french-europeana-cased-discriminator) checkpoint and optimized via the binary cross-entropy loss (as in [monoBERT](https://doi.org/10.48550/arXiv.1910.14424)). It is fine-tuned on one 32GB NVIDIA V100 GPU for 10 epochs (i.e., 312.4k steps) using the AdamW optimizer with a batch size of 32, a peak learning rate of 2e-5 with warm up along the first 500 steps and linear scheduling. We set the maximum sequence length of the concatenated question-passage pairs to 512 tokens. We use the sigmoid function to get scores between 0 and 1. *** ## Citation ```bibtex @online{louis2023, author = 'Antoine Louis', title = 'crossencoder-electra-base-french-mmarcoFR: A Cross-Encoder Model Trained on 1M sentence pairs in French', publisher = 'Hugging Face', month = 'september', year = '2023', url = 'https://huggingface.co/antoinelouis/crossencoder-electra-base-french-mmarcoFR', } ```