File size: 5,271 Bytes
301b9ff
661be03
 
301b9ff
 
661be03
 
301b9ff
62a3236
 
301b9ff
 
 
 
 
 
 
 
 
 
661be03
301b9ff
661be03
 
 
 
301b9ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
---
language:
- en
license: apache-2.0
tags:
- voxpopuli
- google/xtreme_s
- generated_from_trainer
datasets:
- google/xtreme_s
model-index:
- name: xtreme_s_xlsr_300m_voxpopuli_en
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xtreme_s_xlsr_300m_voxpopuli_en

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the GOOGLE/XTREME_S - VOXPOPULI.EN dataset.
It achieves the following results on the evaluation set:
- Cer: 0.0966
- Loss: 0.3127
- Wer: 0.1549
- Predict Samples: 1842

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 10.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
| 1.4221        | 0.19  | 500   | 1.3325          | 0.8224 | 0.3432 |
| 0.8429        | 0.38  | 1000  | 0.7087          | 0.5028 | 0.2023 |
| 0.7377        | 0.57  | 1500  | 0.4900          | 0.2778 | 0.1339 |
| 0.5641        | 0.77  | 2000  | 0.4460          | 0.2540 | 0.1284 |
| 0.5787        | 0.96  | 2500  | 0.4242          | 0.2148 | 0.1167 |
| 0.3465        | 1.15  | 3000  | 0.4210          | 0.2087 | 0.1154 |
| 0.2787        | 1.34  | 3500  | 0.3954          | 0.2090 | 0.1155 |
| 0.2775        | 1.53  | 4000  | 0.3938          | 0.1992 | 0.1133 |
| 0.262         | 1.72  | 4500  | 0.3748          | 0.2104 | 0.1151 |
| 0.3138        | 1.92  | 5000  | 0.3825          | 0.1993 | 0.1134 |
| 0.4331        | 2.11  | 5500  | 0.3648          | 0.1935 | 0.1104 |
| 0.3802        | 2.3   | 6000  | 0.3966          | 0.1910 | 0.1109 |
| 0.3928        | 2.49  | 6500  | 0.3995          | 0.1898 | 0.1100 |
| 0.3441        | 2.68  | 7000  | 0.3764          | 0.1887 | 0.1103 |
| 0.3673        | 2.87  | 7500  | 0.3800          | 0.1843 | 0.1086 |
| 0.3422        | 3.07  | 8000  | 0.3932          | 0.1830 | 0.1092 |
| 0.2933        | 3.26  | 8500  | 0.3672          | 0.1915 | 0.1104 |
| 0.1785        | 3.45  | 9000  | 0.3820          | 0.1796 | 0.1072 |
| 0.321         | 3.64  | 9500  | 0.3533          | 0.1994 | 0.1126 |
| 0.1673        | 3.83  | 10000 | 0.3683          | 0.1856 | 0.1084 |
| 0.1757        | 4.02  | 10500 | 0.3365          | 0.1925 | 0.1102 |
| 0.1881        | 4.22  | 11000 | 0.3528          | 0.1775 | 0.1066 |
| 0.3106        | 4.41  | 11500 | 0.3909          | 0.1754 | 0.1063 |
| 0.25          | 4.6   | 12000 | 0.3734          | 0.1723 | 0.1052 |
| 0.2005        | 4.79  | 12500 | 0.3358          | 0.1900 | 0.1092 |
| 0.2982        | 4.98  | 13000 | 0.3513          | 0.1766 | 0.1060 |
| 0.1552        | 5.17  | 13500 | 0.3720          | 0.1729 | 0.1059 |
| 0.1645        | 5.37  | 14000 | 0.3569          | 0.1713 | 0.1044 |
| 0.2065        | 5.56  | 14500 | 0.3639          | 0.1720 | 0.1048 |
| 0.1898        | 5.75  | 15000 | 0.3660          | 0.1726 | 0.1050 |
| 0.1397        | 5.94  | 15500 | 0.3731          | 0.1670 | 0.1033 |
| 0.2056        | 6.13  | 16000 | 0.3782          | 0.1650 | 0.1030 |
| 0.1859        | 6.32  | 16500 | 0.3903          | 0.1667 | 0.1033 |
| 0.1374        | 6.52  | 17000 | 0.3721          | 0.1736 | 0.1048 |
| 0.2482        | 6.71  | 17500 | 0.3899          | 0.1643 | 0.1023 |
| 0.159         | 6.9   | 18000 | 0.3847          | 0.1687 | 0.1032 |
| 0.1487        | 7.09  | 18500 | 0.3817          | 0.1671 | 0.1030 |
| 0.1942        | 7.28  | 19000 | 0.4120          | 0.1616 | 0.1018 |
| 0.1517        | 7.47  | 19500 | 0.3856          | 0.1635 | 0.1020 |
| 0.0946        | 7.67  | 20000 | 0.3838          | 0.1621 | 0.1016 |
| 0.1455        | 7.86  | 20500 | 0.3749          | 0.1652 | 0.1020 |
| 0.1303        | 8.05  | 21000 | 0.4074          | 0.1615 | 0.1011 |
| 0.1207        | 8.24  | 21500 | 0.4121          | 0.1606 | 0.1008 |
| 0.0727        | 8.43  | 22000 | 0.3948          | 0.1607 | 0.1009 |
| 0.1123        | 8.62  | 22500 | 0.4025          | 0.1603 | 0.1009 |
| 0.1606        | 8.82  | 23000 | 0.3963          | 0.1580 | 0.1004 |
| 0.1458        | 9.01  | 23500 | 0.3991          | 0.1574 | 0.1002 |
| 0.2286        | 9.2   | 24000 | 0.4149          | 0.1596 | 0.1009 |
| 0.1284        | 9.39  | 24500 | 0.4251          | 0.1572 | 0.1002 |
| 0.1141        | 9.58  | 25000 | 0.4264          | 0.1579 | 0.1002 |
| 0.1823        | 9.77  | 25500 | 0.4230          | 0.1562 | 0.0999 |
| 0.2514        | 9.97  | 26000 | 0.4242          | 0.1564 | 0.0999 |


### Framework versions

- Transformers 4.18.0.dev0
- Pytorch 1.10.1+cu111
- Datasets 1.18.4.dev0
- Tokenizers 0.11.6