anuragshas
commited on
Commit
•
64ae049
1
Parent(s):
f1ff9aa
Update README.md
Browse files
README.md
CHANGED
@@ -38,7 +38,7 @@ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
|
38 |
import pandas as pd
|
39 |
|
40 |
# Evaluation notebook contains the procedure to download the data
|
41 |
-
df = pd.read_csv("/content/te/test.tsv", sep="
|
42 |
df["path"] = "/content/te/clips/" + df["path"]
|
43 |
test_dataset = Dataset.from_pandas(df)
|
44 |
|
@@ -72,7 +72,7 @@ from sklearn.model_selection import train_test_split
|
|
72 |
import pandas as pd
|
73 |
|
74 |
# Evaluation notebook contains the procedure to download the data
|
75 |
-
df = pd.read_csv("/content/te/test.tsv", sep="
|
76 |
df["path"] = "/content/te/clips/" + df["path"]
|
77 |
test_dataset = Dataset.from_pandas(df)
|
78 |
wer = load_metric("wer")
|
@@ -81,12 +81,14 @@ processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53
|
|
81 |
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-telugu")
|
82 |
model.to("cuda")
|
83 |
|
84 |
-
chars_to_ignore_regex = '[
|
85 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
86 |
|
87 |
def normalizer(text):
|
88 |
# Use your custom normalizer
|
89 |
-
text = text.replace("
|
|
|
|
|
90 |
text = ' '.join(text.split())
|
91 |
text = re.sub(r'''([a-z]+)''','',text,flags=re.IGNORECASE)
|
92 |
text = re.sub(r'''%'''," శాతం ", text)
|
@@ -117,7 +119,7 @@ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"],
|
|
117 |
|
118 |
**Test Result**: 44.98%
|
119 |
## Training
|
120 |
-
70% of the OpenSLR
|
121 |
|
122 |
Train Split of annotations is [here](https://www.dropbox.com/s/xqc0wtour7f9h4c/train.tsv)
|
123 |
|
|
|
38 |
import pandas as pd
|
39 |
|
40 |
# Evaluation notebook contains the procedure to download the data
|
41 |
+
df = pd.read_csv("/content/te/test.tsv", sep="\\t")
|
42 |
df["path"] = "/content/te/clips/" + df["path"]
|
43 |
test_dataset = Dataset.from_pandas(df)
|
44 |
|
|
|
72 |
import pandas as pd
|
73 |
|
74 |
# Evaluation notebook contains the procedure to download the data
|
75 |
+
df = pd.read_csv("/content/te/test.tsv", sep="\\t")
|
76 |
df["path"] = "/content/te/clips/" + df["path"]
|
77 |
test_dataset = Dataset.from_pandas(df)
|
78 |
wer = load_metric("wer")
|
|
|
81 |
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-telugu")
|
82 |
model.to("cuda")
|
83 |
|
84 |
+
chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\_\\;\\:\\"\\“\\%\\‘\\”\\।\\’\\'\\&]'
|
85 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
86 |
|
87 |
def normalizer(text):
|
88 |
# Use your custom normalizer
|
89 |
+
text = text.replace("\\\
|
90 |
+
","\
|
91 |
+
")
|
92 |
text = ' '.join(text.split())
|
93 |
text = re.sub(r'''([a-z]+)''','',text,flags=re.IGNORECASE)
|
94 |
text = re.sub(r'''%'''," శాతం ", text)
|
|
|
119 |
|
120 |
**Test Result**: 44.98%
|
121 |
## Training
|
122 |
+
70% of the OpenSLR Telugu dataset was used for training.
|
123 |
|
124 |
Train Split of annotations is [here](https://www.dropbox.com/s/xqc0wtour7f9h4c/train.tsv)
|
125 |
|