File size: 11,069 Bytes
4b92543 f03b7cc 4b92543 88e15d8 4b92543 f03b7cc 4b92543 00d4dcc 4b92543 f03b7cc 4b92543 f03b7cc 4b92543 00d4dcc 4b92543 00d4dcc 4b92543 f03b7cc 4b92543 f03b7cc 4b92543 00d4dcc 4b92543 00d4dcc 4b92543 f03b7cc 4b92543 f03b7cc 4b92543 00d4dcc 4b92543 00d4dcc 4b92543 f03b7cc 4b92543 00d4dcc 4b92543 00d4dcc 4b92543 f03b7cc 00d4dcc 4b92543 f03b7cc 4b92543 f03b7cc 4b92543 f03b7cc 4b92543 f03b7cc 4b92543 f03b7cc 4b92543 f03b7cc 4b92543 f03b7cc 4b92543 f03b7cc 00d4dcc f03b7cc 4b92543 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Deploy LLaVA on Amazon SageMaker\n",
"\n",
"Amazon SageMaker is a popular platform for running AI models, and models on huggingface deploy [Hugging Face Transformers](https://github.com/huggingface/transformers) using [Amazon SageMaker](https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html) and the [Amazon SageMaker Python SDK](https://sagemaker.readthedocs.io/en/stable/).\n",
"\n",
"![llava](https://i.imgur.com/YNVG140.png)\n",
"\n",
"Install sagemaker sdk:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install sagemaker --upgrade\n",
"!pip install -r code/requirements.txt"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Bundle llava model weights and code into a `model.tar.gz`:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# Create SageMaker model.tar.gz artifact\n",
"!tar -cf model.tar.gz --use-compress-program=pigz *"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"After we created the `model.tar.gz` archive we can upload it to Amazon S3. We will use the `sagemaker` SDK to upload the model to our sagemaker session bucket.\n",
"\n",
"Initialize sagemaker session first:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"sagemaker.config INFO - Not applying SDK defaults from location: /Library/Application Support/sagemaker/config.yaml\n",
"sagemaker.config INFO - Not applying SDK defaults from location: /Users/tom/Library/Application Support/sagemaker/config.yaml\n",
"sagemaker.config INFO - Not applying SDK defaults from location: /Library/Application Support/sagemaker/config.yaml\n",
"sagemaker.config INFO - Not applying SDK defaults from location: /Users/tom/Library/Application Support/sagemaker/config.yaml\n",
"sagemaker.config INFO - Not applying SDK defaults from location: /Library/Application Support/sagemaker/config.yaml\n",
"sagemaker.config INFO - Not applying SDK defaults from location: /Users/tom/Library/Application Support/sagemaker/config.yaml\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Couldn't call 'get_role' to get Role ARN from role name arn:aws:iam::297308036828:root to get Role path.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"sagemaker.config INFO - Not applying SDK defaults from location: /Library/Application Support/sagemaker/config.yaml\n",
"sagemaker.config INFO - Not applying SDK defaults from location: /Users/tom/Library/Application Support/sagemaker/config.yaml\n",
"sagemaker role arn: arn:aws:iam::297308036828:role/service-role/AmazonSageMaker-ExecutionRole-20231008T201275\n",
"sagemaker bucket: sagemaker-us-west-2-297308036828\n",
"sagemaker session region: us-west-2\n"
]
}
],
"source": [
"import sagemaker\n",
"import boto3\n",
"sess = sagemaker.Session()\n",
"# sagemaker session bucket -> used for uploading data, models and logs\n",
"# sagemaker will automatically create this bucket if it not exists\n",
"sagemaker_session_bucket=None\n",
"if sagemaker_session_bucket is None and sess is not None:\n",
" # set to default bucket if a bucket name is not given\n",
" sagemaker_session_bucket = sess.default_bucket()\n",
"\n",
"try:\n",
" role = sagemaker.get_execution_role()\n",
"except ValueError:\n",
" iam = boto3.client('iam')\n",
" # setup your own rolename in sagemaker\n",
" role = iam.get_role(RoleName='AmazonSageMaker-ExecutionRole-20231008T201275')['Role']['Arn']\n",
"\n",
"sess = sagemaker.Session(default_bucket=sagemaker_session_bucket)\n",
"\n",
"print(f\"sagemaker role arn: {role}\")\n",
"print(f\"sagemaker bucket: {sess.default_bucket()}\")\n",
"print(f\"sagemaker session region: {sess.boto_region_name}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Upload the `model.tar.gz` to our sagemaker session bucket:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"sagemaker.config INFO - Not applying SDK defaults from location: /Library/Application Support/sagemaker/config.yaml\n",
"sagemaker.config INFO - Not applying SDK defaults from location: /Users/tom/Library/Application Support/sagemaker/config.yaml\n",
"model uploaded to: s3://sagemaker-us-west-2-297308036828/llava-v1.5-7b/model.tar.gz\n"
]
}
],
"source": [
"from sagemaker.s3 import S3Uploader\n",
"\n",
"# upload model.tar.gz to s3\n",
"s3_model_uri = S3Uploader.upload(local_path=\"./model.tar.gz\", desired_s3_uri=f\"s3://{sess.default_bucket()}/llava-v1.5-7b\")\n",
"\n",
"print(f\"model uploaded to: {s3_model_uri}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We will use `HuggingfaceModel` to create our real-time inference endpoint:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"sagemaker.config INFO - Not applying SDK defaults from location: /Library/Application Support/sagemaker/config.yaml\n",
"sagemaker.config INFO - Not applying SDK defaults from location: /Users/tom/Library/Application Support/sagemaker/config.yaml\n",
"sagemaker.config INFO - Not applying SDK defaults from location: /Library/Application Support/sagemaker/config.yaml\n",
"sagemaker.config INFO - Not applying SDK defaults from location: /Users/tom/Library/Application Support/sagemaker/config.yaml\n",
"-----------------!"
]
}
],
"source": [
"\n",
"from sagemaker.huggingface.model import HuggingFaceModel\n",
"\n",
"# create Hugging Face Model Class\n",
"huggingface_model = HuggingFaceModel(\n",
" model_data=s3_model_uri, # path to your model and script\n",
" role=role, # iam role with permissions to create an Endpoint\n",
" transformers_version=\"4.28.1\", # transformers version used\n",
" pytorch_version=\"2.0.0\", # pytorch version used\n",
" py_version='py310', # python version used\n",
" model_server_workers=1\n",
")\n",
"\n",
"# deploy the endpoint endpoint\n",
"predictor = huggingface_model.deploy(\n",
" initial_instance_count=1,\n",
" instance_type=\"ml.g5.xlarge\",\n",
" # container_startup_health_check_timeout=600, # increase timeout for large models\n",
" # model_data_download_timeout=600, # increase timeout for large models\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The `.deploy()` returns an `HuggingFacePredictor` object which can be used to request inference using the `.predict()` method. Our endpoint expects a `json` with at least `image` and `question` key."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The image features a red and black toy horse with a pair of glasses on its face. The horse is wearing a pair of red glasses, which adds a unique and quirky touch to the toy. The horse's legs are also painted in red and black colors, further enhancing its appearance. The toy horse is standing on a grey surface, which serves as a backdrop for the scene.\n"
]
}
],
"source": [
"data = {\n",
" \"image\" : 'https://raw.githubusercontent.com/haotian-liu/LLaVA/main/images/llava_logo.png', \n",
" \"question\" : \"Describe the image and color details.\",\n",
" # \"max_new_tokens\" : 1024,\n",
" # \"temperature\" : 0.2,\n",
" # \"conv_mode\" : \"llava_v1\"\n",
"}\n",
"\n",
"# request\n",
"output = predictor.predict(data)\n",
"print(output)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The inference ` predictor` can also be initilized like with your deployed `endpoint_name` :"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"sagemaker.config INFO - Not applying SDK defaults from location: /Library/Application Support/sagemaker/config.yaml\n",
"sagemaker.config INFO - Not applying SDK defaults from location: /Users/tom/Library/Application Support/sagemaker/config.yaml\n",
"sagemaker.config INFO - Not applying SDK defaults from location: /Library/Application Support/sagemaker/config.yaml\n",
"sagemaker.config INFO - Not applying SDK defaults from location: /Users/tom/Library/Application Support/sagemaker/config.yaml\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Couldn't call 'get_role' to get Role ARN from role name arn:aws:iam::297308036828:root to get Role path.\n"
]
}
],
"source": [
"import sagemaker\n",
"import boto3\n",
"sess = sagemaker.Session()\n",
"try:\n",
" role = sagemaker.get_execution_role()\n",
"except ValueError:\n",
" iam = boto3.client('iam')\n",
" # setup your own rolename in sagemaker\n",
" role = iam.get_role(RoleName='AmazonSageMaker-ExecutionRole-20231008T201275')['Role']['Arn']\n",
"\n",
"from sagemaker.huggingface.model import HuggingFacePredictor\n",
"# initial the endpoint predictor\n",
"predictor2 = HuggingFacePredictor(\n",
" endpoint_name=\"huggingface-pytorch-inference-2023-10-19-05-57-37-847\",\n",
" sagemaker_session=sess\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To clean up, we can delete the model and endpoint by `delete_endpoint()`or using sagemaker console:"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"# delete sagemaker endpoint\n",
"predictor.delete_model()\n",
"predictor.delete_endpoint()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "llava",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|