File size: 11,069 Bytes
4b92543
 
f03b7cc
 
 
 
 
 
 
 
 
 
 
 
 
4b92543
 
 
 
 
 
88e15d8
 
4b92543
 
f03b7cc
 
 
 
 
 
 
4b92543
 
00d4dcc
4b92543
 
 
f03b7cc
4b92543
 
 
f03b7cc
 
 
 
 
 
 
 
 
4b92543
 
00d4dcc
4b92543
00d4dcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b92543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f03b7cc
4b92543
 
 
 
 
 
 
 
 
f03b7cc
 
 
 
 
 
 
4b92543
 
00d4dcc
4b92543
00d4dcc
 
 
 
 
 
 
 
 
 
 
4b92543
 
 
 
 
 
 
 
 
 
f03b7cc
4b92543
 
f03b7cc
4b92543
 
 
 
00d4dcc
4b92543
 
 
 
 
 
 
 
 
 
00d4dcc
4b92543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f03b7cc
 
 
 
 
 
 
4b92543
 
00d4dcc
4b92543
 
 
 
 
 
00d4dcc
4b92543
 
 
 
 
 
f03b7cc
 
 
00d4dcc
4b92543
 
 
 
 
 
 
 
f03b7cc
4b92543
 
f03b7cc
4b92543
 
 
 
f03b7cc
4b92543
f03b7cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b92543
f03b7cc
 
 
 
 
 
 
 
 
4b92543
f03b7cc
4b92543
f03b7cc
 
4b92543
 
 
f03b7cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00d4dcc
f03b7cc
 
4b92543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Deploy LLaVA on Amazon SageMaker\n",
    "\n",
    "Amazon SageMaker is a popular platform for running AI models, and models on huggingface deploy [Hugging Face Transformers](https://github.com/huggingface/transformers) using [Amazon SageMaker](https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html) and the [Amazon SageMaker Python SDK](https://sagemaker.readthedocs.io/en/stable/).\n",
    "\n",
    "![llava](https://i.imgur.com/YNVG140.png)\n",
    "\n",
    "Install sagemaker sdk:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install sagemaker --upgrade\n",
    "!pip install -r code/requirements.txt"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Bundle llava model weights and code into a `model.tar.gz`:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Create SageMaker model.tar.gz artifact\n",
    "!tar -cf model.tar.gz --use-compress-program=pigz *"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "After we created the `model.tar.gz` archive we can upload it to Amazon S3. We will use the `sagemaker` SDK to upload the model to our sagemaker session bucket.\n",
    "\n",
    "Initialize sagemaker session first:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "sagemaker.config INFO - Not applying SDK defaults from location: /Library/Application Support/sagemaker/config.yaml\n",
      "sagemaker.config INFO - Not applying SDK defaults from location: /Users/tom/Library/Application Support/sagemaker/config.yaml\n",
      "sagemaker.config INFO - Not applying SDK defaults from location: /Library/Application Support/sagemaker/config.yaml\n",
      "sagemaker.config INFO - Not applying SDK defaults from location: /Users/tom/Library/Application Support/sagemaker/config.yaml\n",
      "sagemaker.config INFO - Not applying SDK defaults from location: /Library/Application Support/sagemaker/config.yaml\n",
      "sagemaker.config INFO - Not applying SDK defaults from location: /Users/tom/Library/Application Support/sagemaker/config.yaml\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Couldn't call 'get_role' to get Role ARN from role name arn:aws:iam::297308036828:root to get Role path.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "sagemaker.config INFO - Not applying SDK defaults from location: /Library/Application Support/sagemaker/config.yaml\n",
      "sagemaker.config INFO - Not applying SDK defaults from location: /Users/tom/Library/Application Support/sagemaker/config.yaml\n",
      "sagemaker role arn: arn:aws:iam::297308036828:role/service-role/AmazonSageMaker-ExecutionRole-20231008T201275\n",
      "sagemaker bucket: sagemaker-us-west-2-297308036828\n",
      "sagemaker session region: us-west-2\n"
     ]
    }
   ],
   "source": [
    "import sagemaker\n",
    "import boto3\n",
    "sess = sagemaker.Session()\n",
    "# sagemaker session bucket -> used for uploading data, models and logs\n",
    "# sagemaker will automatically create this bucket if it not exists\n",
    "sagemaker_session_bucket=None\n",
    "if sagemaker_session_bucket is None and sess is not None:\n",
    "    # set to default bucket if a bucket name is not given\n",
    "    sagemaker_session_bucket = sess.default_bucket()\n",
    "\n",
    "try:\n",
    "    role = sagemaker.get_execution_role()\n",
    "except ValueError:\n",
    "    iam = boto3.client('iam')\n",
    "    # setup your own rolename in sagemaker\n",
    "    role = iam.get_role(RoleName='AmazonSageMaker-ExecutionRole-20231008T201275')['Role']['Arn']\n",
    "\n",
    "sess = sagemaker.Session(default_bucket=sagemaker_session_bucket)\n",
    "\n",
    "print(f\"sagemaker role arn: {role}\")\n",
    "print(f\"sagemaker bucket: {sess.default_bucket()}\")\n",
    "print(f\"sagemaker session region: {sess.boto_region_name}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Upload the `model.tar.gz` to our sagemaker session bucket:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "sagemaker.config INFO - Not applying SDK defaults from location: /Library/Application Support/sagemaker/config.yaml\n",
      "sagemaker.config INFO - Not applying SDK defaults from location: /Users/tom/Library/Application Support/sagemaker/config.yaml\n",
      "model uploaded to: s3://sagemaker-us-west-2-297308036828/llava-v1.5-7b/model.tar.gz\n"
     ]
    }
   ],
   "source": [
    "from sagemaker.s3 import S3Uploader\n",
    "\n",
    "# upload model.tar.gz to s3\n",
    "s3_model_uri = S3Uploader.upload(local_path=\"./model.tar.gz\", desired_s3_uri=f\"s3://{sess.default_bucket()}/llava-v1.5-7b\")\n",
    "\n",
    "print(f\"model uploaded to: {s3_model_uri}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We will use `HuggingfaceModel` to create our real-time inference endpoint:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "sagemaker.config INFO - Not applying SDK defaults from location: /Library/Application Support/sagemaker/config.yaml\n",
      "sagemaker.config INFO - Not applying SDK defaults from location: /Users/tom/Library/Application Support/sagemaker/config.yaml\n",
      "sagemaker.config INFO - Not applying SDK defaults from location: /Library/Application Support/sagemaker/config.yaml\n",
      "sagemaker.config INFO - Not applying SDK defaults from location: /Users/tom/Library/Application Support/sagemaker/config.yaml\n",
      "-----------------!"
     ]
    }
   ],
   "source": [
    "\n",
    "from sagemaker.huggingface.model import HuggingFaceModel\n",
    "\n",
    "# create Hugging Face Model Class\n",
    "huggingface_model = HuggingFaceModel(\n",
    "   model_data=s3_model_uri,      # path to your model and script\n",
    "   role=role,                    # iam role with permissions to create an Endpoint\n",
    "   transformers_version=\"4.28.1\",  # transformers version used\n",
    "   pytorch_version=\"2.0.0\",       # pytorch version used\n",
    "   py_version='py310',            # python version used\n",
    "   model_server_workers=1\n",
    ")\n",
    "\n",
    "# deploy the endpoint endpoint\n",
    "predictor = huggingface_model.deploy(\n",
    "    initial_instance_count=1,\n",
    "    instance_type=\"ml.g5.xlarge\",\n",
    "    # container_startup_health_check_timeout=600, # increase timeout for large models\n",
    "    # model_data_download_timeout=600, # increase timeout for large models\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The `.deploy()` returns an `HuggingFacePredictor` object which can be used to request inference using the `.predict()` method. Our endpoint expects a `json` with at least `image` and `question` key."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The image features a red and black toy horse with a pair of glasses on its face. The horse is wearing a pair of red glasses, which adds a unique and quirky touch to the toy. The horse's legs are also painted in red and black colors, further enhancing its appearance. The toy horse is standing on a grey surface, which serves as a backdrop for the scene.\n"
     ]
    }
   ],
   "source": [
    "data = {\n",
    "    \"image\" : 'https://raw.githubusercontent.com/haotian-liu/LLaVA/main/images/llava_logo.png', \n",
    "    \"question\" : \"Describe the image and color details.\",\n",
    "    # \"max_new_tokens\" : 1024,\n",
    "    # \"temperature\" : 0.2,\n",
    "    # \"conv_mode\" : \"llava_v1\"\n",
    "}\n",
    "\n",
    "# request\n",
    "output = predictor.predict(data)\n",
    "print(output)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The inference ` predictor` can also be initilized like with your deployed `endpoint_name` :"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "sagemaker.config INFO - Not applying SDK defaults from location: /Library/Application Support/sagemaker/config.yaml\n",
      "sagemaker.config INFO - Not applying SDK defaults from location: /Users/tom/Library/Application Support/sagemaker/config.yaml\n",
      "sagemaker.config INFO - Not applying SDK defaults from location: /Library/Application Support/sagemaker/config.yaml\n",
      "sagemaker.config INFO - Not applying SDK defaults from location: /Users/tom/Library/Application Support/sagemaker/config.yaml\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Couldn't call 'get_role' to get Role ARN from role name arn:aws:iam::297308036828:root to get Role path.\n"
     ]
    }
   ],
   "source": [
    "import sagemaker\n",
    "import boto3\n",
    "sess = sagemaker.Session()\n",
    "try:\n",
    "    role = sagemaker.get_execution_role()\n",
    "except ValueError:\n",
    "    iam = boto3.client('iam')\n",
    "    # setup your own rolename in sagemaker\n",
    "    role = iam.get_role(RoleName='AmazonSageMaker-ExecutionRole-20231008T201275')['Role']['Arn']\n",
    "\n",
    "from sagemaker.huggingface.model import HuggingFacePredictor\n",
    "# initial the endpoint predictor\n",
    "predictor2 = HuggingFacePredictor(\n",
    "    endpoint_name=\"huggingface-pytorch-inference-2023-10-19-05-57-37-847\",\n",
    "    sagemaker_session=sess\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "To clean up, we can delete the model and endpoint by `delete_endpoint()`or using sagemaker console:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [],
   "source": [
    "# delete sagemaker endpoint\n",
    "predictor.delete_model()\n",
    "predictor.delete_endpoint()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "llava",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.13"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}