import requests from PIL import Image from io import BytesIO import torch from transformers import AutoTokenizer, BitsAndBytesConfig from llava.model import LlavaLlamaForCausalLM from llava.utils import disable_torch_init from llava.constants import IMAGE_TOKEN_INDEX from llava.mm_utils import tokenizer_image_token, KeywordsStoppingCriteria def model_fn(model_dir): kwargs = {"device_map": "auto"} kwargs["torch_dtype"] = torch.float16 model = LlavaLlamaForCausalLM.from_pretrained( model_dir, low_cpu_mem_usage=True, **kwargs ) tokenizer = AutoTokenizer.from_pretrained(model_dir, use_fast=False) vision_tower = model.get_vision_tower() if not vision_tower.is_loaded: vision_tower.load_model() vision_tower.to(device="cuda", dtype=torch.float16) image_processor = vision_tower.image_processor return model, tokenizer, image_processor def predict_fn(data, model_and_tokenizer): # unpack model and tokenizer model, tokenizer, image_processor = model_and_tokenizer # get prompt & parameters image_file = data.pop("image", data) prompt = data.pop("question", data) max_new_tokens = data.pop("max_new_tokens", 1024) temperature = data.pop("temperature", 0.2) stop_str = data.pop("stop_str", "###") if image_file.startswith("http") or image_file.startswith("https"): response = requests.get(image_file) image = Image.open(BytesIO(response.content)).convert("RGB") else: image = Image.open(image_file).convert("RGB") disable_torch_init() image_tensor = ( image_processor.preprocess(image, return_tensors="pt")["pixel_values"] .half() .cuda() ) keywords = [stop_str] input_ids = ( tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt") .unsqueeze(0) .cuda() ) stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) with torch.inference_mode(): output_ids = model.generate( input_ids, images=image_tensor, do_sample=True, temperature=temperature, max_new_tokens=max_new_tokens, use_cache=True, stopping_criteria=[stopping_criteria], ) outputs = tokenizer.decode( output_ids[0, input_ids.shape[1] :], skip_special_tokens=True ).strip() return outputs