aimv2-large-patch14-224-lit / configuration_aimv2.py
michalk8's picture
PyTorch code (#3)
b3a6e2f verified
from typing import Any, Dict, Optional, Union
from transformers.configuration_utils import PretrainedConfig
__all__ = ["AIMv2VisionConfig", "AIMv2TextConfig", "AIMv2Config"]
class AIMv2VisionConfig(PretrainedConfig):
"""This is the configuration class to store the configuration of an [`AIMv2VisionModel`].
Instantiating a configuration with the defaults will yield a similar configuration
to that of the [apple/aimv2-large-patch14-224-lit](https://huggingface.co/apple/aimv2-large-patch14-224-lit).
Args:
hidden_size: Dimension of the hidden representations.
intermediate_size: Dimension of the SwiGLU representations.
num_hidden_layers: Number of hidden layers in the Transformer.
num_attention_heads: Number of attention heads for each attention layer
in the Transformer.
num_queries: Number of learnable queries for the attention-pooling head.
num_channels: Number of input channels.
image_size: Image size.
patch_size: Patch size.
rms_norm_eps: Epsilon value used for the RMS normalization layer.
attention_dropout: Dropout ratio for attention probabilities.
projection_dropout: Dropout ratio for the projection layer after the attention.
qkv_bias: Whether to add a bias to the queries, keys and values.
use_bias: Whether to add a bias in the feed-forward and projection layers.
kwargs: Keyword arguments for the [`PretrainedConfig`].
"""
model_type: str = "aimv2"
base_config_key: str = "vision_config"
def __init__(
self,
hidden_size: int = 1024,
intermediate_size: int = 2816,
num_hidden_layers: int = 24,
num_attention_heads: int = 8,
num_queries: int = 1,
num_channels: int = 3,
image_size: int = 224,
patch_size: int = 14,
rms_norm_eps: float = 1e-5,
attention_dropout: float = 0.0,
projection_dropout: float = 0.0,
qkv_bias: bool = False,
use_bias: bool = False,
**kwargs: Any,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_queries = num_queries
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.attention_dropout = attention_dropout
self.rms_norm_eps = rms_norm_eps
self.projection_dropout = projection_dropout
self.qkv_bias = qkv_bias
self.use_bias = use_bias
self.is_causal = False
class AIMv2TextConfig(PretrainedConfig):
"""This is the configuration class to store the configuration of an [`AIMv2TextModel`].
Instantiating a configuration with the defaults will yield a similar configuration
to that of the [apple/aimv2-large-patch14-224-lit](https://huggingface.co/apple/aimv2-large-patch14-224-lit).
Args:
vocab_size: Size of the vocabulary.
hidden_size: Dimension of the hidden representations.
intermediate_size: Dimension of the SwiGLU representations.
num_hidden_layers: Number of hidden layers in the Transformer.
num_attention_heads: Number of attention heads for each attention layer
in the Transformer.
rms_norm_eps: Epsilon value used for the RMS normalization layer.
attention_dropout: Dropout ratio for attention probabilities.
projection_dropout: Dropout ratio for the projection layer after the attention.
qkv_bias: Whether to add a bias to the queries, keys and values.
use_bias: Whether to add a bias in the feed-forward and projection layers.
eos_token_id: End-of-sequence token id.
max_context_length: Maximum number of tokens for the context.
kwargs: Keyword arguments for the [`PretrainedConfig`].
"""
model_type: str = "aimv2"
base_config_key: str = "text_config"
def __init__(
self,
vocab_size: int = 49408,
hidden_size: int = 768,
intermediate_size: int = 2048,
num_hidden_layers: int = 12,
num_attention_heads: int = 6,
rms_norm_eps: float = 1e-5,
attention_dropout: float = 0.0,
projection_dropout: float = 0.0,
qkv_bias: bool = False,
use_bias: bool = False,
eos_token_id: int = 49407,
max_context_length: int = 77,
**kwargs: Any,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.attention_dropout = attention_dropout
self.rms_norm_eps = rms_norm_eps
self.projection_dropout = projection_dropout
self.qkv_bias = qkv_bias
self.use_bias = use_bias
self.vocab_size = vocab_size
self.max_context_length = max_context_length
self.eos_token_id = eos_token_id
self.is_causal = True
class AIMv2Config(PretrainedConfig):
"""This is the configuration class to store the configuration of an [`AIMv2Model`].
Instantiating a configuration with the defaults will yield a similar configuration
to that of the [apple/aimv2-large-patch14-224-lit](https://huggingface.co/apple/aimv2-large-patch14-224-lit).
Args:
vision_config: Vision config.
text_config: Text config.
projection_dim: Dimension of the image and text projection layers.
kwargs: Keyword arguments for the [`PretrainedConfig`].
"""
model_type = "aimv2"
is_composition: bool = True
sub_configs: Dict[str, PretrainedConfig] = {
"vision_config": AIMv2VisionConfig,
"text_config": AIMv2TextConfig,
}
def __init__(
self,
vision_config: Optional[Union[AIMv2VisionConfig, Dict[str, Any]]] = None,
text_config: Optional[Union[AIMv2TextConfig, Dict[str, Any]]] = None,
projection_dim: int = 768,
init_temperature: float = 0.07,
max_logit_scale: float = 100.0,
**kwargs: Any,
):
super().__init__(**kwargs)
if vision_config is None:
vision_config = AIMv2VisionConfig()
elif isinstance(vision_config, dict):
vision_config = AIMv2VisionConfig(**vision_config)
if text_config is None:
text_config = AIMv2TextConfig()
elif isinstance(text_config, dict):
text_config = AIMv2TextConfig(**text_config)
self.vision_config = vision_config
self.text_config = text_config
self.projection_dim = projection_dim
self.init_temperature = init_temperature
self.max_logit_scale = max_logit_scale