from typing import Any from transformers.configuration_utils import PretrainedConfig __all__ = ["AIMv2Config"] class AIMv2Config(PretrainedConfig): """This is the configuration class to store the configuration of an [`AIMv2Model`]. Instantiating a configuration with the defaults will yield a similar configuration to that of the [apple/aimv2-large-patch14-224](https://huggingface.co/apple/aimv2-large-patch14-224). Args: hidden_size: Dimension of the hidden representations. intermediate_size: Dimension of the SwiGLU representations. num_hidden_layers: Number of hidden layers in the Transformer. num_attention_heads: Number of attention heads for each attention layer in the Transformer. num_channels: Number of input channels. image_size: Image size. patch_size: Patch size. rms_norm_eps: Epsilon value used for the RMS normalization layer. attention_dropout: Dropout ratio for attention probabilities. projection_dropout: Dropout ratio for the projection layer after the attention. qkv_bias: Whether to add a bias to the queries, keys and values. use_bias: Whether to add a bias in the feed-forward and projection layers. kwargs: Keyword arguments for the [`PretrainedConfig`]. """ model_type: str = "aimv2" def __init__( self, hidden_size: int = 1024, intermediate_size: int = 2816, num_hidden_layers: int = 24, num_attention_heads: int = 8, num_channels: int = 3, image_size: int = 224, patch_size: int = 14, rms_norm_eps: float = 1e-5, attention_dropout: float = 0.0, projection_dropout: float = 0.0, qkv_bias: bool = False, use_bias: bool = False, **kwargs: Any, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_channels = num_channels self.patch_size = patch_size self.image_size = image_size self.attention_dropout = attention_dropout self.rms_norm_eps = rms_norm_eps self.projection_dropout = projection_dropout self.qkv_bias = qkv_bias self.use_bias = use_bias