|
{ |
|
"log_file": [ |
|
"step_131-b_0.log", |
|
"step_131-b_1.log", |
|
"step_131-b_2.log", |
|
"step_131-b_3.log", |
|
"step_131-b_4.log", |
|
"step_131-b_5.log" |
|
], |
|
"query": [ |
|
"<s>Below is an Instruction section that describes a task, paired with an Input section that provides further context.\nWrite in the Response section that appropriately completes the request.\n\n### Instruction:\nAnswer a math question in the input.\n\nTo assist you, you can invoke a math-aware search API (i.e., SEARCH) or a computation API (COMPUTE), and I will insert the returned API results for you right after each valid SEARCH or COMPUTE calls.\n\nThe SEARCH API is followed by its parameters which are a list of keywords in JSON format, for example:\n\nSEARCH[\"$x^2 = -1$\", \"imaginary numbers\"]\n\nDO NOT mix text and math in one JSON item, i.e. instead of writing:\n\nSEARCH['$what kind of curve is defined by x^2 - y^2 = 4$']\n\nwrite keyword by keyword with only one type in each:\n\nSEARCH[\"curve\", \"defined by\", \"$x^2 - y^2 = 4$\"]\n\nFor the COMPUTE API, it is also followed by its parameters in JSON. The first parameter `mode' is chosen from `calculate', `simplify' or `solve *', whereas the second parameter is the symbolic expression in LaTeX.\n\nFor example, to calculate sine of 270 degree, you can do:\n\nCOMPUTE[\"calculate\", \"\\\\sin(270 \\\\times \\\\frac{\\\\pi}{180})\"]\n\nTo simplify $\\sin^2 x + \\cos^2 x$, you can do:\n\nCOMPUTE[\"simplify\", \"\\\\sin^2(x) + \\\\cos^2(x)\"]\n\nAnd to solve $y = 1 - 2 y^2$ for y, you can do:\n\nCOMPUTE[\"solve y\", \"y = 1 - 2 y^2\"]\n\nFor the SEARCH API, only consider helpful API results for your goal, ignore irrelevant ones.\nFor the COMPUTE API, remember it is limited to simple tasks. It does not support linear algebra, nor matrix manipulations.\n\nWhen the API result is helpful, you can just rely on the result or extract the final answer from it directly, in such case, there is no need to answer from the begining and redo any existing derivations in the result.\n\nWhen API results are not helpful, ignore the results and answer the given math question directly!\n\nAt the end, indicate your final answer in boxed LaTeX. For example, if you think the final answer is \\sqrt{3}, write it as \\boxed{\\sqrt{3}} (in boxed LaTeX) at the very end of your output.\n\nTake a deep breath and now I will hand the math question to you!\n\n### Input:\nIn the diagram below, $\\overline{AB}\\parallel \\overline{CD}$ and $\\angle AXE$ is $108^\\circ$ less than 3 times $\\angle CYX$. Find $\\angle BXY$.\n\n[asy]\n\nunitsize(1inch);\n\npair A,B,C,D,X,Y,EE,F;\n\nA = (0,0);\n\nB=(1,0);\n\nC = (0,0.8);\n\nD=(1,0.8);\n\nEE = (0.35,-0.3);\n\nF = (0.8,1.1);\n\ndraw(EE--F);\n\ndraw(A--B);\n\ndraw(C--D);\n\ndot(A);\n\ndot(B);\n\ndot(C);\n\ndot(D);\n\ndot(EE);\n\ndot(F);\n\nlabel(\"$E$\",EE,S);\n\nlabel(\"$F$\",F,N);\n\nX = intersectionpoint(A--B,EE--F);\n\nY = intersectionpoint(C--D,EE--F);\n\nlabel(\"$X$\",X,NNW);\n\nlabel(\"$Y$\",Y,NNW);\n\nlabel(\"$A$\",A,W);\n\nlabel(\"$B$\",B,E);\n\nlabel(\"$C$\",C,W);\n\nlabel(\"$D$\",D,E);\n\ndot(X);\n\ndot(Y);\n\n[/asy]\n\n### Response:\n", |
|
"<s>Below is an Instruction section that describes a task, paired with an Input section that provides further context.\nWrite in the Response section that appropriately completes the request.\n\n### Instruction:\nAnswer a math question in the input.\n\nTo assist you, you can invoke a math-aware search API (i.e., SEARCH) or a computation API (COMPUTE), and I will insert the returned API results for you right after each valid SEARCH or COMPUTE calls.\n\nThe SEARCH API is followed by its parameters which are a list of keywords in JSON format, for example:\n\nSEARCH[\"$x^2 = -1$\", \"imaginary numbers\"]\n\nDO NOT mix text and math in one JSON item, i.e. instead of writing:\n\nSEARCH['$what kind of curve is defined by x^2 - y^2 = 4$']\n\nwrite keyword by keyword with only one type in each:\n\nSEARCH[\"curve\", \"defined by\", \"$x^2 - y^2 = 4$\"]\n\nFor the COMPUTE API, it is also followed by its parameters in JSON. The first parameter `mode' is chosen from `calculate', `simplify' or `solve *', whereas the second parameter is the symbolic expression in LaTeX.\n\nFor example, to calculate sine of 270 degree, you can do:\n\nCOMPUTE[\"calculate\", \"\\\\sin(270 \\\\times \\\\frac{\\\\pi}{180})\"]\n\nTo simplify $\\sin^2 x + \\cos^2 x$, you can do:\n\nCOMPUTE[\"simplify\", \"\\\\sin^2(x) + \\\\cos^2(x)\"]\n\nAnd to solve $y = 1 - 2 y^2$ for y, you can do:\n\nCOMPUTE[\"solve y\", \"y = 1 - 2 y^2\"]\n\nFor the SEARCH API, only consider helpful API results for your goal, ignore irrelevant ones.\nFor the COMPUTE API, remember it is limited to simple tasks. It does not support linear algebra, nor matrix manipulations.\n\nWhen the API result is helpful, you can just rely on the result or extract the final answer from it directly, in such case, there is no need to answer from the begining and redo any existing derivations in the result.\n\nWhen API results are not helpful, ignore the results and answer the given math question directly!\n\nAt the end, indicate your final answer in boxed LaTeX. For example, if you think the final answer is \\sqrt{3}, write it as \\boxed{\\sqrt{3}} (in boxed LaTeX) at the very end of your output.\n\nTake a deep breath and now I will hand the math question to you!\n\n### Input:\nIn the diagram below, $\\overline{AB}\\parallel \\overline{CD}$ and $\\angle AXE$ is $108^\\circ$ less than 3 times $\\angle CYX$. Find $\\angle BXY$.\n\n[asy]\n\nunitsize(1inch);\n\npair A,B,C,D,X,Y,EE,F;\n\nA = (0,0);\n\nB=(1,0);\n\nC = (0,0.8);\n\nD=(1,0.8);\n\nEE = (0.35,-0.3);\n\nF = (0.8,1.1);\n\ndraw(EE--F);\n\ndraw(A--B);\n\ndraw(C--D);\n\ndot(A);\n\ndot(B);\n\ndot(C);\n\ndot(D);\n\ndot(EE);\n\ndot(F);\n\nlabel(\"$E$\",EE,S);\n\nlabel(\"$F$\",F,N);\n\nX = intersectionpoint(A--B,EE--F);\n\nY = intersectionpoint(C--D,EE--F);\n\nlabel(\"$X$\",X,NNW);\n\nlabel(\"$Y$\",Y,NNW);\n\nlabel(\"$A$\",A,W);\n\nlabel(\"$B$\",B,E);\n\nlabel(\"$C$\",C,W);\n\nlabel(\"$D$\",D,E);\n\ndot(X);\n\ndot(Y);\n\n[/asy]\n\n### Response:\nSEARCH[\"\\\\cos(\\\\cos)\"]\n\nHere are the results:\n--- RESULTS BEGIN ---\nURL: /tuna1/scratch/w32zhong/corpus/MATH/train/precalculus/161.json\n\n#### Similar Question\nCompute\n\\[\n\\begin{vmatrix} \\cos 1 & \\cos 2 & \\cos 3 \\\\ \\cos 4 & \\cos 5 & \\cos 6 \\\\ \\cos 7 & \\cos 8 & \\cos 9 \\end{vmatrix}\n.\\]All the angles are in radians.\n\n#### User Answer\nThe entries in each row are $\\cos n,$ $\\cos (n + 1),$ and $\\cos (n + 2)$ for some integer $n.$ From the angle addition formula,\n\\[\\cos n + \\cos (n + 2) = 2 \\cos (n + 1) \\cos 1.\\]Then\n\\[\\cos (n + 2) = 2 \\cos 1 \\cos (n + 1) - \\cos n.\\]Thus, we can obtain the third column of the matrix by multiplying the second column by $2 \\cos 1,$ and subtracting the first column. In other words, the third column is a linear combination of the first two columns. Therefore, the determinant is $0.$\n\n--- RESULTS END ---\n\n", |
|
"<s>Below is an Instruction section that describes a task, paired with an Input section that provides further context.\nWrite in the Response section that appropriately completes the request.\n\n### Instruction:\nAnswer a math question in the input.\n\nTo assist you, you can invoke a math-aware search API (i.e., SEARCH) or a computation API (COMPUTE), and I will insert the returned API results for you right after each valid SEARCH or COMPUTE calls.\n\nThe SEARCH API is followed by its parameters which are a list of keywords in JSON format, for example:\n\nSEARCH[\"$x^2 = -1$\", \"imaginary numbers\"]\n\nDO NOT mix text and math in one JSON item, i.e. instead of writing:\n\nSEARCH['$what kind of curve is defined by x^2 - y^2 = 4$']\n\nwrite keyword by keyword with only one type in each:\n\nSEARCH[\"curve\", \"defined by\", \"$x^2 - y^2 = 4$\"]\n\nFor the COMPUTE API, it is also followed by its parameters in JSON. The first parameter `mode' is chosen from `calculate', `simplify' or `solve *', whereas the second parameter is the symbolic expression in LaTeX.\n\nFor example, to calculate sine of 270 degree, you can do:\n\nCOMPUTE[\"calculate\", \"\\\\sin(270 \\\\times \\\\frac{\\\\pi}{180})\"]\n\nTo simplify $\\sin^2 x + \\cos^2 x$, you can do:\n\nCOMPUTE[\"simplify\", \"\\\\sin^2(x) + \\\\cos^2(x)\"]\n\nAnd to solve $y = 1 - 2 y^2$ for y, you can do:\n\nCOMPUTE[\"solve y\", \"y = 1 - 2 y^2\"]\n\nFor the SEARCH API, only consider helpful API results for your goal, ignore irrelevant ones.\nFor the COMPUTE API, remember it is limited to simple tasks. It does not support linear algebra, nor matrix manipulations.\n\nWhen the API result is helpful, you can just rely on the result or extract the final answer from it directly, in such case, there is no need to answer from the begining and redo any existing derivations in the result.\n\nWhen API results are not helpful, ignore the results and answer the given math question directly!\n\nAt the end, indicate your final answer in boxed LaTeX. For example, if you think the final answer is \\sqrt{3}, write it as \\boxed{\\sqrt{3}} (in boxed LaTeX) at the very end of your output.\n\nTake a deep breath and now I will hand the math question to you!\n\n### Input:\nIn the diagram below, $\\overline{AB}\\parallel \\overline{CD}$ and $\\angle AXE$ is $108^\\circ$ less than 3 times $\\angle CYX$. Find $\\angle BXY$.\n\n[asy]\n\nunitsize(1inch);\n\npair A,B,C,D,X,Y,EE,F;\n\nA = (0,0);\n\nB=(1,0);\n\nC = (0,0.8);\n\nD=(1,0.8);\n\nEE = (0.35,-0.3);\n\nF = (0.8,1.1);\n\ndraw(EE--F);\n\ndraw(A--B);\n\ndraw(C--D);\n\ndot(A);\n\ndot(B);\n\ndot(C);\n\ndot(D);\n\ndot(EE);\n\ndot(F);\n\nlabel(\"$E$\",EE,S);\n\nlabel(\"$F$\",F,N);\n\nX = intersectionpoint(A--B,EE--F);\n\nY = intersectionpoint(C--D,EE--F);\n\nlabel(\"$X$\",X,NNW);\n\nlabel(\"$Y$\",Y,NNW);\n\nlabel(\"$A$\",A,W);\n\nlabel(\"$B$\",B,E);\n\nlabel(\"$C$\",C,W);\n\nlabel(\"$D$\",D,E);\n\ndot(X);\n\ndot(Y);\n\n[/asy]\n\n### Response:\n", |
|
"<s>Below is an Instruction section that describes a task, paired with an Input section that provides further context.\nWrite in the Response section that appropriately completes the request.\n\n### Instruction:\nAnswer a math question in the input.\n\nTo assist you, you can invoke a math-aware search API (i.e., SEARCH) or a computation API (COMPUTE), and I will insert the returned API results for you right after each valid SEARCH or COMPUTE calls.\n\nThe SEARCH API is followed by its parameters which are a list of keywords in JSON format, for example:\n\nSEARCH[\"$x^2 = -1$\", \"imaginary numbers\"]\n\nDO NOT mix text and math in one JSON item, i.e. instead of writing:\n\nSEARCH['$what kind of curve is defined by x^2 - y^2 = 4$']\n\nwrite keyword by keyword with only one type in each:\n\nSEARCH[\"curve\", \"defined by\", \"$x^2 - y^2 = 4$\"]\n\nFor the COMPUTE API, it is also followed by its parameters in JSON. The first parameter `mode' is chosen from `calculate', `simplify' or `solve *', whereas the second parameter is the symbolic expression in LaTeX.\n\nFor example, to calculate sine of 270 degree, you can do:\n\nCOMPUTE[\"calculate\", \"\\\\sin(270 \\\\times \\\\frac{\\\\pi}{180})\"]\n\nTo simplify $\\sin^2 x + \\cos^2 x$, you can do:\n\nCOMPUTE[\"simplify\", \"\\\\sin^2(x) + \\\\cos^2(x)\"]\n\nAnd to solve $y = 1 - 2 y^2$ for y, you can do:\n\nCOMPUTE[\"solve y\", \"y = 1 - 2 y^2\"]\n\nFor the SEARCH API, only consider helpful API results for your goal, ignore irrelevant ones.\nFor the COMPUTE API, remember it is limited to simple tasks. It does not support linear algebra, nor matrix manipulations.\n\nWhen the API result is helpful, you can just rely on the result or extract the final answer from it directly, in such case, there is no need to answer from the begining and redo any existing derivations in the result.\n\nWhen API results are not helpful, ignore the results and answer the given math question directly!\n\nAt the end, indicate your final answer in boxed LaTeX. For example, if you think the final answer is \\sqrt{3}, write it as \\boxed{\\sqrt{3}} (in boxed LaTeX) at the very end of your output.\n\nTake a deep breath and now I will hand the math question to you!\n\n### Input:\nIn the diagram below, $\\overline{AB}\\parallel \\overline{CD}$ and $\\angle AXE$ is $108^\\circ$ less than 3 times $\\angle CYX$. Find $\\angle BXY$.\n\n[asy]\n\nunitsize(1inch);\n\npair A,B,C,D,X,Y,EE,F;\n\nA = (0,0);\n\nB=(1,0);\n\nC = (0,0.8);\n\nD=(1,0.8);\n\nEE = (0.35,-0.3);\n\nF = (0.8,1.1);\n\ndraw(EE--F);\n\ndraw(A--B);\n\ndraw(C--D);\n\ndot(A);\n\ndot(B);\n\ndot(C);\n\ndot(D);\n\ndot(EE);\n\ndot(F);\n\nlabel(\"$E$\",EE,S);\n\nlabel(\"$F$\",F,N);\n\nX = intersectionpoint(A--B,EE--F);\n\nY = intersectionpoint(C--D,EE--F);\n\nlabel(\"$X$\",X,NNW);\n\nlabel(\"$Y$\",Y,NNW);\n\nlabel(\"$A$\",A,W);\n\nlabel(\"$B$\",B,E);\n\nlabel(\"$C$\",C,W);\n\nlabel(\"$D$\",D,E);\n\ndot(X);\n\ndot(Y);\n\n[/asy]\n\n### Response:\nSEARCH[\"\\\\cos(\\\\cos)\"]\n\nHere are the results:\n--- RESULTS BEGIN ---\nURL: /tuna1/scratch/w32zhong/corpus/MATH/train/precalculus/996.json\n\n#### Similar Question\nIf angle $A$ lies in the second quadrant and $\\sin A = \\frac{3}{4},$ find $\\cos A.$\n\n#### User Answer\nSince angle $A$ lies in the second quadrant, $\\cos A$ is negative. Also,\n\\[\\cos^2 A = 1 - \\sin^2 A = 1 - \\frac{9}{16} = \\frac{7}{16},\\]so $\\cos A = -\\frac{\\sqrt{7}}{4}.$\n\n--- RESULTS END ---\n\n", |
|
"<s>Below is an Instruction section that describes a task, paired with an Input section that provides further context.\nWrite in the Response section that appropriately completes the request.\n\n### Instruction:\nAnswer a math question in the input.\n\nTo assist you, you can invoke a math-aware search API (i.e., SEARCH) or a computation API (COMPUTE), and I will insert the returned API results for you right after each valid SEARCH or COMPUTE calls.\n\nThe SEARCH API is followed by its parameters which are a list of keywords in JSON format, for example:\n\nSEARCH[\"$x^2 = -1$\", \"imaginary numbers\"]\n\nDO NOT mix text and math in one JSON item, i.e. instead of writing:\n\nSEARCH['$what kind of curve is defined by x^2 - y^2 = 4$']\n\nwrite keyword by keyword with only one type in each:\n\nSEARCH[\"curve\", \"defined by\", \"$x^2 - y^2 = 4$\"]\n\nFor the COMPUTE API, it is also followed by its parameters in JSON. The first parameter `mode' is chosen from `calculate', `simplify' or `solve *', whereas the second parameter is the symbolic expression in LaTeX.\n\nFor example, to calculate sine of 270 degree, you can do:\n\nCOMPUTE[\"calculate\", \"\\\\sin(270 \\\\times \\\\frac{\\\\pi}{180})\"]\n\nTo simplify $\\sin^2 x + \\cos^2 x$, you can do:\n\nCOMPUTE[\"simplify\", \"\\\\sin^2(x) + \\\\cos^2(x)\"]\n\nAnd to solve $y = 1 - 2 y^2$ for y, you can do:\n\nCOMPUTE[\"solve y\", \"y = 1 - 2 y^2\"]\n\nFor the SEARCH API, only consider helpful API results for your goal, ignore irrelevant ones.\nFor the COMPUTE API, remember it is limited to simple tasks. It does not support linear algebra, nor matrix manipulations.\n\nWhen the API result is helpful, you can just rely on the result or extract the final answer from it directly, in such case, there is no need to answer from the begining and redo any existing derivations in the result.\n\nWhen API results are not helpful, ignore the results and answer the given math question directly!\n\nAt the end, indicate your final answer in boxed LaTeX. For example, if you think the final answer is \\sqrt{3}, write it as \\boxed{\\sqrt{3}} (in boxed LaTeX) at the very end of your output.\n\nTake a deep breath and now I will hand the math question to you!\n\n### Input:\nIn the diagram below, $\\overline{AB}\\parallel \\overline{CD}$ and $\\angle AXE$ is $108^\\circ$ less than 3 times $\\angle CYX$. Find $\\angle BXY$.\n\n[asy]\n\nunitsize(1inch);\n\npair A,B,C,D,X,Y,EE,F;\n\nA = (0,0);\n\nB=(1,0);\n\nC = (0,0.8);\n\nD=(1,0.8);\n\nEE = (0.35,-0.3);\n\nF = (0.8,1.1);\n\ndraw(EE--F);\n\ndraw(A--B);\n\ndraw(C--D);\n\ndot(A);\n\ndot(B);\n\ndot(C);\n\ndot(D);\n\ndot(EE);\n\ndot(F);\n\nlabel(\"$E$\",EE,S);\n\nlabel(\"$F$\",F,N);\n\nX = intersectionpoint(A--B,EE--F);\n\nY = intersectionpoint(C--D,EE--F);\n\nlabel(\"$X$\",X,NNW);\n\nlabel(\"$Y$\",Y,NNW);\n\nlabel(\"$A$\",A,W);\n\nlabel(\"$B$\",B,E);\n\nlabel(\"$C$\",C,W);\n\nlabel(\"$D$\",D,E);\n\ndot(X);\n\ndot(Y);\n\n[/asy]\n\n### Response:\n", |
|
"<s>Below is an Instruction section that describes a task, paired with an Input section that provides further context.\nWrite in the Response section that appropriately completes the request.\n\n### Instruction:\nAnswer a math question in the input.\n\nTo assist you, you can invoke a math-aware search API (i.e., SEARCH) or a computation API (COMPUTE), and I will insert the returned API results for you right after each valid SEARCH or COMPUTE calls.\n\nThe SEARCH API is followed by its parameters which are a list of keywords in JSON format, for example:\n\nSEARCH[\"$x^2 = -1$\", \"imaginary numbers\"]\n\nDO NOT mix text and math in one JSON item, i.e. instead of writing:\n\nSEARCH['$what kind of curve is defined by x^2 - y^2 = 4$']\n\nwrite keyword by keyword with only one type in each:\n\nSEARCH[\"curve\", \"defined by\", \"$x^2 - y^2 = 4$\"]\n\nFor the COMPUTE API, it is also followed by its parameters in JSON. The first parameter `mode' is chosen from `calculate', `simplify' or `solve *', whereas the second parameter is the symbolic expression in LaTeX.\n\nFor example, to calculate sine of 270 degree, you can do:\n\nCOMPUTE[\"calculate\", \"\\\\sin(270 \\\\times \\\\frac{\\\\pi}{180})\"]\n\nTo simplify $\\sin^2 x + \\cos^2 x$, you can do:\n\nCOMPUTE[\"simplify\", \"\\\\sin^2(x) + \\\\cos^2(x)\"]\n\nAnd to solve $y = 1 - 2 y^2$ for y, you can do:\n\nCOMPUTE[\"solve y\", \"y = 1 - 2 y^2\"]\n\nFor the SEARCH API, only consider helpful API results for your goal, ignore irrelevant ones.\nFor the COMPUTE API, remember it is limited to simple tasks. It does not support linear algebra, nor matrix manipulations.\n\nWhen the API result is helpful, you can just rely on the result or extract the final answer from it directly, in such case, there is no need to answer from the begining and redo any existing derivations in the result.\n\nWhen API results are not helpful, ignore the results and answer the given math question directly!\n\nAt the end, indicate your final answer in boxed LaTeX. For example, if you think the final answer is \\sqrt{3}, write it as \\boxed{\\sqrt{3}} (in boxed LaTeX) at the very end of your output.\n\nTake a deep breath and now I will hand the math question to you!\n\n### Input:\nIn the diagram below, $\\overline{AB}\\parallel \\overline{CD}$ and $\\angle AXE$ is $108^\\circ$ less than 3 times $\\angle CYX$. Find $\\angle BXY$.\n\n[asy]\n\nunitsize(1inch);\n\npair A,B,C,D,X,Y,EE,F;\n\nA = (0,0);\n\nB=(1,0);\n\nC = (0,0.8);\n\nD=(1,0.8);\n\nEE = (0.35,-0.3);\n\nF = (0.8,1.1);\n\ndraw(EE--F);\n\ndraw(A--B);\n\ndraw(C--D);\n\ndot(A);\n\ndot(B);\n\ndot(C);\n\ndot(D);\n\ndot(EE);\n\ndot(F);\n\nlabel(\"$E$\",EE,S);\n\nlabel(\"$F$\",F,N);\n\nX = intersectionpoint(A--B,EE--F);\n\nY = intersectionpoint(C--D,EE--F);\n\nlabel(\"$X$\",X,NNW);\n\nlabel(\"$Y$\",Y,NNW);\n\nlabel(\"$A$\",A,W);\n\nlabel(\"$B$\",B,E);\n\nlabel(\"$C$\",C,W);\n\nlabel(\"$D$\",D,E);\n\ndot(X);\n\ndot(Y);\n\n[/asy]\n\n### Response:\nSEARCH[\"\\\\cos(\\\\cos)\"]\n\nHere are the results:\n--- RESULTS BEGIN ---\nURL: /tuna1/scratch/w32zhong/corpus/MATH/train/precalculus/314.json\n\n#### Similar Question\nFind the range of $f(x) = \\sin^4 x - \\sin x \\cos x +\\cos^4 x.$\n\n#### User Answer\nWe know that $\\sin^2 x + \\cos^2 x = 1.$ Squaring, we get\n\\[\\sin^4 x + 2 \\sin^2 x \\cos^2 x + \\cos^4 x = 1.\\]Hence,\n\\begin{align*}\nf(x) &= (\\sin^4 x + \\cos^4 x) - \\sin x \\cos x \\\\\n&= (1 - 2 \\sin^2 x \\cos^2 x) - \\sin x \\cos x \\\\\n&= 1 - \\frac{1}{2} \\sin 2x - \\frac{1}{2} \\sin^2 2x \\\\\n&= \\frac{9}{8} - \\frac{1}{2} \\left( \\sin 2x + \\frac{1}{2} \\right)^2.\n\\end{align*}Since the range of $\\sin x$ is $[-1,1],$ the range of $f(x)$ reaches a minimum when $\\sin 2x = 1,$ in which case $f(x) = 0,$ and a maximum when $\\sin 2x = -\\frac{1}{2},$ in which case $f(x) = \\frac{9}{8}.$ Therefore, the range of $f(x)$ is $\\left[ 0, \\frac{9}{8} \\right].$\n\n--- RESULTS END ---\n\n" |
|
], |
|
"response": [ |
|
" SEARCH[\"\\\\cos(\\\\cos)\"]</s>", |
|
" The result looks irrelevant, I will completely ignore it and answer the question directly.\n\nSince $\\overline{AB}\\parallel\\overline{CD}$, we know that $\\angle AXE = \\angle CYX$. Letting $x = \\angle AXE$, we have $x = 3x - 108$. Solving this equation gives $x = 30$. We know that $\\angle AXE = \\angle CYX = x$, so $\\angle BXY = \\angle AXE = \\boxed{30}$.</s>", |
|
" SEARCH[\"\\\\cos(\\\\cos)\"]</s>", |
|
" The result looks irrelevant, I will completely ignore it and answer the question directly.\n\nSince $\\overline{AB}\\parallel\\overline{CD}$, we know that $\\angle AXE = \\angle CYX$. Letting $x = \\angle AXE$, we have $x = 3x - 108^\\circ$. Solving this equation, we get $x = 54^\\circ$. We therefore have $\\angle BXY = \\angle AXE = \\boxed{54^\\circ}$.</s>", |
|
" SEARCH[\"\\\\cos(\\\\cos)\"]</s>", |
|
" The result looks irrelevant, I will completely ignore it and answer the question directly.\n\nSince $\\overline{AB}\\parallel\\overline{CD}$, we know that $\\angle AXE = \\angle CYX$. Letting $x = \\angle AXE$, we have $x = 3x - 108$. Solving this equation gives $x = 42$. We therefore have $\\angle AXE = \\boxed{42}$.</s>" |
|
], |
|
"src_path": [ |
|
"train/prealgebra/1644.json", |
|
"train/prealgebra/1644.json", |
|
"train/prealgebra/1644.json", |
|
"train/prealgebra/1644.json", |
|
"train/prealgebra/1644.json", |
|
"train/prealgebra/1644.json" |
|
], |
|
"input": [ |
|
"In the diagram below, $\\overline{AB}\\parallel \\overline{CD}$ and $\\angle AXE$ is $108^\\circ$ less than 3 times $\\angle CYX$. Find $\\angle BXY$.\n\n[asy]\n\nunitsize(1inch);\n\npair A,B,C,D,X,Y,EE,F;\n\nA = (0,0);\n\nB=(1,0);\n\nC = (0,0.8);\n\nD=(1,0.8);\n\nEE = (0.35,-0.3);\n\nF = (0.8,1.1);\n\ndraw(EE--F);\n\ndraw(A--B);\n\ndraw(C--D);\n\ndot(A);\n\ndot(B);\n\ndot(C);\n\ndot(D);\n\ndot(EE);\n\ndot(F);\n\nlabel(\"$E$\",EE,S);\n\nlabel(\"$F$\",F,N);\n\nX = intersectionpoint(A--B,EE--F);\n\nY = intersectionpoint(C--D,EE--F);\n\nlabel(\"$X$\",X,NNW);\n\nlabel(\"$Y$\",Y,NNW);\n\nlabel(\"$A$\",A,W);\n\nlabel(\"$B$\",B,E);\n\nlabel(\"$C$\",C,W);\n\nlabel(\"$D$\",D,E);\n\ndot(X);\n\ndot(Y);\n\n[/asy]", |
|
"In the diagram below, $\\overline{AB}\\parallel \\overline{CD}$ and $\\angle AXE$ is $108^\\circ$ less than 3 times $\\angle CYX$. Find $\\angle BXY$.\n\n[asy]\n\nunitsize(1inch);\n\npair A,B,C,D,X,Y,EE,F;\n\nA = (0,0);\n\nB=(1,0);\n\nC = (0,0.8);\n\nD=(1,0.8);\n\nEE = (0.35,-0.3);\n\nF = (0.8,1.1);\n\ndraw(EE--F);\n\ndraw(A--B);\n\ndraw(C--D);\n\ndot(A);\n\ndot(B);\n\ndot(C);\n\ndot(D);\n\ndot(EE);\n\ndot(F);\n\nlabel(\"$E$\",EE,S);\n\nlabel(\"$F$\",F,N);\n\nX = intersectionpoint(A--B,EE--F);\n\nY = intersectionpoint(C--D,EE--F);\n\nlabel(\"$X$\",X,NNW);\n\nlabel(\"$Y$\",Y,NNW);\n\nlabel(\"$A$\",A,W);\n\nlabel(\"$B$\",B,E);\n\nlabel(\"$C$\",C,W);\n\nlabel(\"$D$\",D,E);\n\ndot(X);\n\ndot(Y);\n\n[/asy]", |
|
"In the diagram below, $\\overline{AB}\\parallel \\overline{CD}$ and $\\angle AXE$ is $108^\\circ$ less than 3 times $\\angle CYX$. Find $\\angle BXY$.\n\n[asy]\n\nunitsize(1inch);\n\npair A,B,C,D,X,Y,EE,F;\n\nA = (0,0);\n\nB=(1,0);\n\nC = (0,0.8);\n\nD=(1,0.8);\n\nEE = (0.35,-0.3);\n\nF = (0.8,1.1);\n\ndraw(EE--F);\n\ndraw(A--B);\n\ndraw(C--D);\n\ndot(A);\n\ndot(B);\n\ndot(C);\n\ndot(D);\n\ndot(EE);\n\ndot(F);\n\nlabel(\"$E$\",EE,S);\n\nlabel(\"$F$\",F,N);\n\nX = intersectionpoint(A--B,EE--F);\n\nY = intersectionpoint(C--D,EE--F);\n\nlabel(\"$X$\",X,NNW);\n\nlabel(\"$Y$\",Y,NNW);\n\nlabel(\"$A$\",A,W);\n\nlabel(\"$B$\",B,E);\n\nlabel(\"$C$\",C,W);\n\nlabel(\"$D$\",D,E);\n\ndot(X);\n\ndot(Y);\n\n[/asy]", |
|
"In the diagram below, $\\overline{AB}\\parallel \\overline{CD}$ and $\\angle AXE$ is $108^\\circ$ less than 3 times $\\angle CYX$. Find $\\angle BXY$.\n\n[asy]\n\nunitsize(1inch);\n\npair A,B,C,D,X,Y,EE,F;\n\nA = (0,0);\n\nB=(1,0);\n\nC = (0,0.8);\n\nD=(1,0.8);\n\nEE = (0.35,-0.3);\n\nF = (0.8,1.1);\n\ndraw(EE--F);\n\ndraw(A--B);\n\ndraw(C--D);\n\ndot(A);\n\ndot(B);\n\ndot(C);\n\ndot(D);\n\ndot(EE);\n\ndot(F);\n\nlabel(\"$E$\",EE,S);\n\nlabel(\"$F$\",F,N);\n\nX = intersectionpoint(A--B,EE--F);\n\nY = intersectionpoint(C--D,EE--F);\n\nlabel(\"$X$\",X,NNW);\n\nlabel(\"$Y$\",Y,NNW);\n\nlabel(\"$A$\",A,W);\n\nlabel(\"$B$\",B,E);\n\nlabel(\"$C$\",C,W);\n\nlabel(\"$D$\",D,E);\n\ndot(X);\n\ndot(Y);\n\n[/asy]", |
|
"In the diagram below, $\\overline{AB}\\parallel \\overline{CD}$ and $\\angle AXE$ is $108^\\circ$ less than 3 times $\\angle CYX$. Find $\\angle BXY$.\n\n[asy]\n\nunitsize(1inch);\n\npair A,B,C,D,X,Y,EE,F;\n\nA = (0,0);\n\nB=(1,0);\n\nC = (0,0.8);\n\nD=(1,0.8);\n\nEE = (0.35,-0.3);\n\nF = (0.8,1.1);\n\ndraw(EE--F);\n\ndraw(A--B);\n\ndraw(C--D);\n\ndot(A);\n\ndot(B);\n\ndot(C);\n\ndot(D);\n\ndot(EE);\n\ndot(F);\n\nlabel(\"$E$\",EE,S);\n\nlabel(\"$F$\",F,N);\n\nX = intersectionpoint(A--B,EE--F);\n\nY = intersectionpoint(C--D,EE--F);\n\nlabel(\"$X$\",X,NNW);\n\nlabel(\"$Y$\",Y,NNW);\n\nlabel(\"$A$\",A,W);\n\nlabel(\"$B$\",B,E);\n\nlabel(\"$C$\",C,W);\n\nlabel(\"$D$\",D,E);\n\ndot(X);\n\ndot(Y);\n\n[/asy]", |
|
"In the diagram below, $\\overline{AB}\\parallel \\overline{CD}$ and $\\angle AXE$ is $108^\\circ$ less than 3 times $\\angle CYX$. Find $\\angle BXY$.\n\n[asy]\n\nunitsize(1inch);\n\npair A,B,C,D,X,Y,EE,F;\n\nA = (0,0);\n\nB=(1,0);\n\nC = (0,0.8);\n\nD=(1,0.8);\n\nEE = (0.35,-0.3);\n\nF = (0.8,1.1);\n\ndraw(EE--F);\n\ndraw(A--B);\n\ndraw(C--D);\n\ndot(A);\n\ndot(B);\n\ndot(C);\n\ndot(D);\n\ndot(EE);\n\ndot(F);\n\nlabel(\"$E$\",EE,S);\n\nlabel(\"$F$\",F,N);\n\nX = intersectionpoint(A--B,EE--F);\n\nY = intersectionpoint(C--D,EE--F);\n\nlabel(\"$X$\",X,NNW);\n\nlabel(\"$Y$\",Y,NNW);\n\nlabel(\"$A$\",A,W);\n\nlabel(\"$B$\",B,E);\n\nlabel(\"$C$\",C,W);\n\nlabel(\"$D$\",D,E);\n\ndot(X);\n\ndot(Y);\n\n[/asy]" |
|
], |
|
"output": [ |
|
"Since $\\overline{AB}\\parallel\\overline{CD}$, we have $\\angle AXE = \\angle CYX$. Letting $x = \\angle AXE$, we have $x = 3x - 108^\\circ$. Solving this equation gives $x = 54^\\circ$. We therefore have $\\angle BXY = \\angle AXE = \\boxed{54^\\circ}$.", |
|
"Since $\\overline{AB}\\parallel\\overline{CD}$, we have $\\angle AXE = \\angle CYX$. Letting $x = \\angle AXE$, we have $x = 3x - 108^\\circ$. Solving this equation gives $x = 54^\\circ$. We therefore have $\\angle BXY = \\angle AXE = \\boxed{54^\\circ}$.", |
|
"Since $\\overline{AB}\\parallel\\overline{CD}$, we have $\\angle AXE = \\angle CYX$. Letting $x = \\angle AXE$, we have $x = 3x - 108^\\circ$. Solving this equation gives $x = 54^\\circ$. We therefore have $\\angle BXY = \\angle AXE = \\boxed{54^\\circ}$.", |
|
"Since $\\overline{AB}\\parallel\\overline{CD}$, we have $\\angle AXE = \\angle CYX$. Letting $x = \\angle AXE$, we have $x = 3x - 108^\\circ$. Solving this equation gives $x = 54^\\circ$. We therefore have $\\angle BXY = \\angle AXE = \\boxed{54^\\circ}$.", |
|
"Since $\\overline{AB}\\parallel\\overline{CD}$, we have $\\angle AXE = \\angle CYX$. Letting $x = \\angle AXE$, we have $x = 3x - 108^\\circ$. Solving this equation gives $x = 54^\\circ$. We therefore have $\\angle BXY = \\angle AXE = \\boxed{54^\\circ}$.", |
|
"Since $\\overline{AB}\\parallel\\overline{CD}$, we have $\\angle AXE = \\angle CYX$. Letting $x = \\angle AXE$, we have $x = 3x - 108^\\circ$. Solving this equation gives $x = 54^\\circ$. We therefore have $\\angle BXY = \\angle AXE = \\boxed{54^\\circ}$." |
|
], |
|
"rewards": [ |
|
0.0, |
|
0.0, |
|
1.0, |
|
1.0, |
|
0.0, |
|
0.0 |
|
] |
|
} |