w32zhong's picture
update model
0d9b66b
{
"log_file": [
"step_134-b_0.log",
"step_134-b_1.log",
"step_134-b_2.log",
"step_134-b_3.log",
"step_134-b_4.log",
"step_134-b_5.log"
],
"query": [
"<s>Below is an Instruction section that describes a task, paired with an Input section that provides further context.\nWrite in the Response section that appropriately completes the request.\n\n### Instruction:\nAnswer a math question in the input.\n\nTo assist you, you can invoke a math-aware search API (i.e., SEARCH) or a computation API (COMPUTE), and I will insert the returned API results for you right after each valid SEARCH or COMPUTE calls.\n\nThe SEARCH API is followed by its parameters which are a list of keywords in JSON format, for example:\n\nSEARCH[\"$x^2 = -1$\", \"imaginary numbers\"]\n\nDO NOT mix text and math in one JSON item, i.e. instead of writing:\n\nSEARCH['$what kind of curve is defined by x^2 - y^2 = 4$']\n\nwrite keyword by keyword with only one type in each:\n\nSEARCH[\"curve\", \"defined by\", \"$x^2 - y^2 = 4$\"]\n\nFor the COMPUTE API, it is also followed by its parameters in JSON. The first parameter `mode' is chosen from `calculate', `simplify' or `solve *', whereas the second parameter is the symbolic expression in LaTeX.\n\nFor example, to calculate sine of 270 degree, you can do:\n\nCOMPUTE[\"calculate\", \"\\\\sin(270 \\\\times \\\\frac{\\\\pi}{180})\"]\n\nTo simplify $\\sin^2 x + \\cos^2 x$, you can do:\n\nCOMPUTE[\"simplify\", \"\\\\sin^2(x) + \\\\cos^2(x)\"]\n\nAnd to solve $y = 1 - 2 y^2$ for y, you can do:\n\nCOMPUTE[\"solve y\", \"y = 1 - 2 y^2\"]\n\nFor the SEARCH API, only consider helpful API results for your goal, ignore irrelevant ones.\nFor the COMPUTE API, remember it is limited to simple tasks. It does not support linear algebra, nor matrix manipulations.\n\nWhen the API result is helpful, you can just rely on the result or extract the final answer from it directly, in such case, there is no need to answer from the begining and redo any existing derivations in the result.\n\nWhen API results are not helpful, ignore the results and answer the given math question directly!\n\nAt the end, indicate your final answer in boxed LaTeX. For example, if you think the final answer is \\sqrt{3}, write it as \\boxed{\\sqrt{3}} (in boxed LaTeX) at the very end of your output.\n\nTake a deep breath and now I will hand the math question to you!\n\n### Input:\nFactor completely: $x^6 - 3x^4 + 3x^2 - 1$.\n\n### Response:\n",
"<s>Below is an Instruction section that describes a task, paired with an Input section that provides further context.\nWrite in the Response section that appropriately completes the request.\n\n### Instruction:\nAnswer a math question in the input.\n\nTo assist you, you can invoke a math-aware search API (i.e., SEARCH) or a computation API (COMPUTE), and I will insert the returned API results for you right after each valid SEARCH or COMPUTE calls.\n\nThe SEARCH API is followed by its parameters which are a list of keywords in JSON format, for example:\n\nSEARCH[\"$x^2 = -1$\", \"imaginary numbers\"]\n\nDO NOT mix text and math in one JSON item, i.e. instead of writing:\n\nSEARCH['$what kind of curve is defined by x^2 - y^2 = 4$']\n\nwrite keyword by keyword with only one type in each:\n\nSEARCH[\"curve\", \"defined by\", \"$x^2 - y^2 = 4$\"]\n\nFor the COMPUTE API, it is also followed by its parameters in JSON. The first parameter `mode' is chosen from `calculate', `simplify' or `solve *', whereas the second parameter is the symbolic expression in LaTeX.\n\nFor example, to calculate sine of 270 degree, you can do:\n\nCOMPUTE[\"calculate\", \"\\\\sin(270 \\\\times \\\\frac{\\\\pi}{180})\"]\n\nTo simplify $\\sin^2 x + \\cos^2 x$, you can do:\n\nCOMPUTE[\"simplify\", \"\\\\sin^2(x) + \\\\cos^2(x)\"]\n\nAnd to solve $y = 1 - 2 y^2$ for y, you can do:\n\nCOMPUTE[\"solve y\", \"y = 1 - 2 y^2\"]\n\nFor the SEARCH API, only consider helpful API results for your goal, ignore irrelevant ones.\nFor the COMPUTE API, remember it is limited to simple tasks. It does not support linear algebra, nor matrix manipulations.\n\nWhen the API result is helpful, you can just rely on the result or extract the final answer from it directly, in such case, there is no need to answer from the begining and redo any existing derivations in the result.\n\nWhen API results are not helpful, ignore the results and answer the given math question directly!\n\nAt the end, indicate your final answer in boxed LaTeX. For example, if you think the final answer is \\sqrt{3}, write it as \\boxed{\\sqrt{3}} (in boxed LaTeX) at the very end of your output.\n\nTake a deep breath and now I will hand the math question to you!\n\n### Input:\nFactor completely: $x^6 - 3x^4 + 3x^2 - 1$.\n\n### Response:\nSEARCH[\"x^6 - 3x^4 + 3x^2 - 1 =?\"]\n\nHere are the results:\n--- RESULTS BEGIN ---\nURL: /tuna1/scratch/w32zhong/corpus/MATH/train/intermediate_algebra/1843.json\n\n#### Similar Question\nFactor completely: $x^6 - 3x^4 + 3x^2 - 1$.\n\n#### User Answer\nNote that $x^6 - 3x^4 + 3x^2 - 1$ is very similar to $(x - 1)^3 = x^3 - 3x^2 + 3x - 1$. If we make the substitution $y = x^2$, our expression becomes $x^6 - 3x^4 + 3x^2 - 1 = y^3 - 3y^2 + 3y - 1 = (y - 1)^3$.\n\nNow, we substitute $x^2$ back in for $y$: $(y - 1)^3 = (x^2 - 1)^3$. Note that $x^2 - 1 = (x - 1)(x + 1)$. Thus, our factorization is $x^6 - 3x^4 + 3x^2 - 1 = (x^2 - 1)^3 = ((x-1)(x+1))^3 = (x-1)^3(x+1)^3$.\n\n--- RESULTS END ---\n\n",
"<s>Below is an Instruction section that describes a task, paired with an Input section that provides further context.\nWrite in the Response section that appropriately completes the request.\n\n### Instruction:\nAnswer a math question in the input.\n\nTo assist you, you can invoke a math-aware search API (i.e., SEARCH) or a computation API (COMPUTE), and I will insert the returned API results for you right after each valid SEARCH or COMPUTE calls.\n\nThe SEARCH API is followed by its parameters which are a list of keywords in JSON format, for example:\n\nSEARCH[\"$x^2 = -1$\", \"imaginary numbers\"]\n\nDO NOT mix text and math in one JSON item, i.e. instead of writing:\n\nSEARCH['$what kind of curve is defined by x^2 - y^2 = 4$']\n\nwrite keyword by keyword with only one type in each:\n\nSEARCH[\"curve\", \"defined by\", \"$x^2 - y^2 = 4$\"]\n\nFor the COMPUTE API, it is also followed by its parameters in JSON. The first parameter `mode' is chosen from `calculate', `simplify' or `solve *', whereas the second parameter is the symbolic expression in LaTeX.\n\nFor example, to calculate sine of 270 degree, you can do:\n\nCOMPUTE[\"calculate\", \"\\\\sin(270 \\\\times \\\\frac{\\\\pi}{180})\"]\n\nTo simplify $\\sin^2 x + \\cos^2 x$, you can do:\n\nCOMPUTE[\"simplify\", \"\\\\sin^2(x) + \\\\cos^2(x)\"]\n\nAnd to solve $y = 1 - 2 y^2$ for y, you can do:\n\nCOMPUTE[\"solve y\", \"y = 1 - 2 y^2\"]\n\nFor the SEARCH API, only consider helpful API results for your goal, ignore irrelevant ones.\nFor the COMPUTE API, remember it is limited to simple tasks. It does not support linear algebra, nor matrix manipulations.\n\nWhen the API result is helpful, you can just rely on the result or extract the final answer from it directly, in such case, there is no need to answer from the begining and redo any existing derivations in the result.\n\nWhen API results are not helpful, ignore the results and answer the given math question directly!\n\nAt the end, indicate your final answer in boxed LaTeX. For example, if you think the final answer is \\sqrt{3}, write it as \\boxed{\\sqrt{3}} (in boxed LaTeX) at the very end of your output.\n\nTake a deep breath and now I will hand the math question to you!\n\n### Input:\nFactor completely: $x^6 - 3x^4 + 3x^2 - 1$.\n\n### Response:\n",
"<s>Below is an Instruction section that describes a task, paired with an Input section that provides further context.\nWrite in the Response section that appropriately completes the request.\n\n### Instruction:\nAnswer a math question in the input.\n\nTo assist you, you can invoke a math-aware search API (i.e., SEARCH) or a computation API (COMPUTE), and I will insert the returned API results for you right after each valid SEARCH or COMPUTE calls.\n\nThe SEARCH API is followed by its parameters which are a list of keywords in JSON format, for example:\n\nSEARCH[\"$x^2 = -1$\", \"imaginary numbers\"]\n\nDO NOT mix text and math in one JSON item, i.e. instead of writing:\n\nSEARCH['$what kind of curve is defined by x^2 - y^2 = 4$']\n\nwrite keyword by keyword with only one type in each:\n\nSEARCH[\"curve\", \"defined by\", \"$x^2 - y^2 = 4$\"]\n\nFor the COMPUTE API, it is also followed by its parameters in JSON. The first parameter `mode' is chosen from `calculate', `simplify' or `solve *', whereas the second parameter is the symbolic expression in LaTeX.\n\nFor example, to calculate sine of 270 degree, you can do:\n\nCOMPUTE[\"calculate\", \"\\\\sin(270 \\\\times \\\\frac{\\\\pi}{180})\"]\n\nTo simplify $\\sin^2 x + \\cos^2 x$, you can do:\n\nCOMPUTE[\"simplify\", \"\\\\sin^2(x) + \\\\cos^2(x)\"]\n\nAnd to solve $y = 1 - 2 y^2$ for y, you can do:\n\nCOMPUTE[\"solve y\", \"y = 1 - 2 y^2\"]\n\nFor the SEARCH API, only consider helpful API results for your goal, ignore irrelevant ones.\nFor the COMPUTE API, remember it is limited to simple tasks. It does not support linear algebra, nor matrix manipulations.\n\nWhen the API result is helpful, you can just rely on the result or extract the final answer from it directly, in such case, there is no need to answer from the begining and redo any existing derivations in the result.\n\nWhen API results are not helpful, ignore the results and answer the given math question directly!\n\nAt the end, indicate your final answer in boxed LaTeX. For example, if you think the final answer is \\sqrt{3}, write it as \\boxed{\\sqrt{3}} (in boxed LaTeX) at the very end of your output.\n\nTake a deep breath and now I will hand the math question to you!\n\n### Input:\nFactor completely: $x^6 - 3x^4 + 3x^2 - 1$.\n\n### Response:\nSEARCH[\"x^6 - 3x^4 + 3x^2 - 1 =?\"]\n\nHere are the results:\n--- RESULTS BEGIN ---\nURL: /tuna1/scratch/w32zhong/corpus/MATH/train/number_theory/871.json\n\n#### Similar Question\nSuppose that $p$ is prime and $1007_p+306_p+113_p+125_p+6_p=142_p+271_p+360_p$. How many possible values of $p$ are there?\n\n#### User Answer\nWe must have that $p^3+7+3p^2+6+p^2+p+3+p^2+2p+5+6=p^2+4p+2+2p^2+7p+1+3p^2+6p$, meaning that $p^3-p^2-14p+24=0$. But the only prime solutions of this can be factors of $24$, i.e. $2$ and $3$. But $7$ is not a digit in base $2$ or $3$, so there are $0$ possible $p$!\n\nRemark: $2$ and $3$ are, in fact, roots of this polynomial.\n\n--- RESULTS END ---\n\n",
"<s>Below is an Instruction section that describes a task, paired with an Input section that provides further context.\nWrite in the Response section that appropriately completes the request.\n\n### Instruction:\nAnswer a math question in the input.\n\nTo assist you, you can invoke a math-aware search API (i.e., SEARCH) or a computation API (COMPUTE), and I will insert the returned API results for you right after each valid SEARCH or COMPUTE calls.\n\nThe SEARCH API is followed by its parameters which are a list of keywords in JSON format, for example:\n\nSEARCH[\"$x^2 = -1$\", \"imaginary numbers\"]\n\nDO NOT mix text and math in one JSON item, i.e. instead of writing:\n\nSEARCH['$what kind of curve is defined by x^2 - y^2 = 4$']\n\nwrite keyword by keyword with only one type in each:\n\nSEARCH[\"curve\", \"defined by\", \"$x^2 - y^2 = 4$\"]\n\nFor the COMPUTE API, it is also followed by its parameters in JSON. The first parameter `mode' is chosen from `calculate', `simplify' or `solve *', whereas the second parameter is the symbolic expression in LaTeX.\n\nFor example, to calculate sine of 270 degree, you can do:\n\nCOMPUTE[\"calculate\", \"\\\\sin(270 \\\\times \\\\frac{\\\\pi}{180})\"]\n\nTo simplify $\\sin^2 x + \\cos^2 x$, you can do:\n\nCOMPUTE[\"simplify\", \"\\\\sin^2(x) + \\\\cos^2(x)\"]\n\nAnd to solve $y = 1 - 2 y^2$ for y, you can do:\n\nCOMPUTE[\"solve y\", \"y = 1 - 2 y^2\"]\n\nFor the SEARCH API, only consider helpful API results for your goal, ignore irrelevant ones.\nFor the COMPUTE API, remember it is limited to simple tasks. It does not support linear algebra, nor matrix manipulations.\n\nWhen the API result is helpful, you can just rely on the result or extract the final answer from it directly, in such case, there is no need to answer from the begining and redo any existing derivations in the result.\n\nWhen API results are not helpful, ignore the results and answer the given math question directly!\n\nAt the end, indicate your final answer in boxed LaTeX. For example, if you think the final answer is \\sqrt{3}, write it as \\boxed{\\sqrt{3}} (in boxed LaTeX) at the very end of your output.\n\nTake a deep breath and now I will hand the math question to you!\n\n### Input:\nFactor completely: $x^6 - 3x^4 + 3x^2 - 1$.\n\n### Response:\n",
"<s>Below is an Instruction section that describes a task, paired with an Input section that provides further context.\nWrite in the Response section that appropriately completes the request.\n\n### Instruction:\nAnswer a math question in the input.\n\nTo assist you, you can invoke a math-aware search API (i.e., SEARCH) or a computation API (COMPUTE), and I will insert the returned API results for you right after each valid SEARCH or COMPUTE calls.\n\nThe SEARCH API is followed by its parameters which are a list of keywords in JSON format, for example:\n\nSEARCH[\"$x^2 = -1$\", \"imaginary numbers\"]\n\nDO NOT mix text and math in one JSON item, i.e. instead of writing:\n\nSEARCH['$what kind of curve is defined by x^2 - y^2 = 4$']\n\nwrite keyword by keyword with only one type in each:\n\nSEARCH[\"curve\", \"defined by\", \"$x^2 - y^2 = 4$\"]\n\nFor the COMPUTE API, it is also followed by its parameters in JSON. The first parameter `mode' is chosen from `calculate', `simplify' or `solve *', whereas the second parameter is the symbolic expression in LaTeX.\n\nFor example, to calculate sine of 270 degree, you can do:\n\nCOMPUTE[\"calculate\", \"\\\\sin(270 \\\\times \\\\frac{\\\\pi}{180})\"]\n\nTo simplify $\\sin^2 x + \\cos^2 x$, you can do:\n\nCOMPUTE[\"simplify\", \"\\\\sin^2(x) + \\\\cos^2(x)\"]\n\nAnd to solve $y = 1 - 2 y^2$ for y, you can do:\n\nCOMPUTE[\"solve y\", \"y = 1 - 2 y^2\"]\n\nFor the SEARCH API, only consider helpful API results for your goal, ignore irrelevant ones.\nFor the COMPUTE API, remember it is limited to simple tasks. It does not support linear algebra, nor matrix manipulations.\n\nWhen the API result is helpful, you can just rely on the result or extract the final answer from it directly, in such case, there is no need to answer from the begining and redo any existing derivations in the result.\n\nWhen API results are not helpful, ignore the results and answer the given math question directly!\n\nAt the end, indicate your final answer in boxed LaTeX. For example, if you think the final answer is \\sqrt{3}, write it as \\boxed{\\sqrt{3}} (in boxed LaTeX) at the very end of your output.\n\nTake a deep breath and now I will hand the math question to you!\n\n### Input:\nFactor completely: $x^6 - 3x^4 + 3x^2 - 1$.\n\n### Response:\nSEARCH[\"x^6 - 3x^4 + 3x^2 - 1 =?\"]\n\nHere are the results:\n--- RESULTS BEGIN ---\nURL: /tuna1/scratch/w32zhong/corpus/MATH/train/intermediate_algebra/661.json\n\n#### Similar Question\nSolve the equation \\[-x^2 = \\frac{3x+1}{x+3}.\\]Enter all solutions, separated by commas.\n\n#### User Answer\nMultiplying both sides by $x+3,$ we have $-x^2(x+3) = 3x+1,$ or $-x^3 - 3x^2 = 3x + 1.$ Thus, \\[x^3 + 3x^2 + 3x + 1 = 0.\\]We recognize the left-hand side as the expansion of $(x+1)^3,$ so \\[(x+1)^3 = 0.\\]This forces $x+1=0,$ so $x = -1,$ which is the only solution.\n\n--- RESULTS END ---\n\n"
],
"response": [
" SEARCH[\"x^6 - 3x^4 + 3x^2 - 1 =?\"]</s>",
" The result looks irrelevant, I will completely ignore it and answer the question directly.\n\nWe can factor a $x^2$ from each term and get $x^2(x^4 - 3x^2 + 1) = x^2(x^2 - 3) = x^2(x - 1)(x^2 - 3) = x^2(x - 1)(x + 1)(x - 3)$. We can factor the last two terms again to get $x^2(x - 1)(x + 1)(x - 3) = x^2(x - 1)(x + 1)(x - 3)(x + 1) = \\boxed{x^6 - 3x^4 + 3x^2 - 1}$.</s>",
" SEARCH[\"x^6 - 3x^4 + 3x^2 - 1 =?\"]</s>",
" The result looks irrelevant, I will completely ignore it and answer the question directly.\n\nWe can factor $x^6-3x^4+3x^2-1$ using the difference of squares factorization. We write $x^6-3x^4+3x^2-1$ as $(x^3+x)(x^3-x^2+1)$. Then, we can factor the difference of squares further as $(x+1)(x^2-x+1)$. Thus, $x^6-3x^4+3x^2-1=\\boxed{(x+1)(x^2-x+1)}$.</s>",
" SEARCH[\"x^6 - 3x^4 + 3x^2 - 1 =?\"]</s>",
" The result looks irrelevant, I will completely ignore it and answer the question directly.\n\nWe can factor a $3$ out of each of the first two terms: \\begin{align*}\nx^6-3x^4+3x^2-1 &= 3\\cdot x^6-3\\cdot x^4+3x^2-1 \\\\\n&= 3\\cdot (x^4-x^2+1) \\\\\n&= 3\\cdot (x^2-1)^2 \\\\\n&= \\boxed{3x^2-3}.\n\\end{align*}</s>"
],
"src_path": [
"train/intermediate_algebra/1843.json",
"train/intermediate_algebra/1843.json",
"train/intermediate_algebra/1843.json",
"train/intermediate_algebra/1843.json",
"train/intermediate_algebra/1843.json",
"train/intermediate_algebra/1843.json"
],
"input": [
"Factor completely: $x^6 - 3x^4 + 3x^2 - 1$.",
"Factor completely: $x^6 - 3x^4 + 3x^2 - 1$.",
"Factor completely: $x^6 - 3x^4 + 3x^2 - 1$.",
"Factor completely: $x^6 - 3x^4 + 3x^2 - 1$.",
"Factor completely: $x^6 - 3x^4 + 3x^2 - 1$.",
"Factor completely: $x^6 - 3x^4 + 3x^2 - 1$."
],
"output": [
"Note that $x^6 - 3x^4 + 3x^2 - 1$ is very similar to $(x - 1)^3 = x^3 - 3x^2 + 3x - 1$. If we make the substitution $y = x^2$, our expression becomes $x^6 - 3x^4 + 3x^2 - 1 = y^3 - 3y^2 + 3y - 1 = (y - 1)^3$.\n\nNow, we substitute $x^2$ back in for $y$: $(y - 1)^3 = (x^2 - 1)^3$. Note that $x^2 - 1 = (x - 1)(x + 1)$. Thus, our factorization is $x^6 - 3x^4 + 3x^2 - 1 = (x^2 - 1)^3 = ((x-1)(x+1))^3 = \\boxed{(x-1)^3(x+1)^3}$.",
"Note that $x^6 - 3x^4 + 3x^2 - 1$ is very similar to $(x - 1)^3 = x^3 - 3x^2 + 3x - 1$. If we make the substitution $y = x^2$, our expression becomes $x^6 - 3x^4 + 3x^2 - 1 = y^3 - 3y^2 + 3y - 1 = (y - 1)^3$.\n\nNow, we substitute $x^2$ back in for $y$: $(y - 1)^3 = (x^2 - 1)^3$. Note that $x^2 - 1 = (x - 1)(x + 1)$. Thus, our factorization is $x^6 - 3x^4 + 3x^2 - 1 = (x^2 - 1)^3 = ((x-1)(x+1))^3 = \\boxed{(x-1)^3(x+1)^3}$.",
"Note that $x^6 - 3x^4 + 3x^2 - 1$ is very similar to $(x - 1)^3 = x^3 - 3x^2 + 3x - 1$. If we make the substitution $y = x^2$, our expression becomes $x^6 - 3x^4 + 3x^2 - 1 = y^3 - 3y^2 + 3y - 1 = (y - 1)^3$.\n\nNow, we substitute $x^2$ back in for $y$: $(y - 1)^3 = (x^2 - 1)^3$. Note that $x^2 - 1 = (x - 1)(x + 1)$. Thus, our factorization is $x^6 - 3x^4 + 3x^2 - 1 = (x^2 - 1)^3 = ((x-1)(x+1))^3 = \\boxed{(x-1)^3(x+1)^3}$.",
"Note that $x^6 - 3x^4 + 3x^2 - 1$ is very similar to $(x - 1)^3 = x^3 - 3x^2 + 3x - 1$. If we make the substitution $y = x^2$, our expression becomes $x^6 - 3x^4 + 3x^2 - 1 = y^3 - 3y^2 + 3y - 1 = (y - 1)^3$.\n\nNow, we substitute $x^2$ back in for $y$: $(y - 1)^3 = (x^2 - 1)^3$. Note that $x^2 - 1 = (x - 1)(x + 1)$. Thus, our factorization is $x^6 - 3x^4 + 3x^2 - 1 = (x^2 - 1)^3 = ((x-1)(x+1))^3 = \\boxed{(x-1)^3(x+1)^3}$.",
"Note that $x^6 - 3x^4 + 3x^2 - 1$ is very similar to $(x - 1)^3 = x^3 - 3x^2 + 3x - 1$. If we make the substitution $y = x^2$, our expression becomes $x^6 - 3x^4 + 3x^2 - 1 = y^3 - 3y^2 + 3y - 1 = (y - 1)^3$.\n\nNow, we substitute $x^2$ back in for $y$: $(y - 1)^3 = (x^2 - 1)^3$. Note that $x^2 - 1 = (x - 1)(x + 1)$. Thus, our factorization is $x^6 - 3x^4 + 3x^2 - 1 = (x^2 - 1)^3 = ((x-1)(x+1))^3 = \\boxed{(x-1)^3(x+1)^3}$.",
"Note that $x^6 - 3x^4 + 3x^2 - 1$ is very similar to $(x - 1)^3 = x^3 - 3x^2 + 3x - 1$. If we make the substitution $y = x^2$, our expression becomes $x^6 - 3x^4 + 3x^2 - 1 = y^3 - 3y^2 + 3y - 1 = (y - 1)^3$.\n\nNow, we substitute $x^2$ back in for $y$: $(y - 1)^3 = (x^2 - 1)^3$. Note that $x^2 - 1 = (x - 1)(x + 1)$. Thus, our factorization is $x^6 - 3x^4 + 3x^2 - 1 = (x^2 - 1)^3 = ((x-1)(x+1))^3 = \\boxed{(x-1)^3(x+1)^3}$."
],
"rewards": [
1.0,
0.0,
0.0,
0.0,
0.0,
0.0
]
}