---
library_name: transformers
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: apv53-finetuned-gtzan
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: GTZAN
      type: marsyas/gtzan
      config: all
      split: train
      args: all
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.78
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# apv53-finetuned-gtzan

This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5072
- Accuracy: 0.78

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.3311        | 1.0   | 113  | 1.2307          | 0.67     |
| 0.7706        | 2.0   | 226  | 1.0825          | 0.63     |
| 0.7012        | 3.0   | 339  | 0.8888          | 0.75     |
| 0.3658        | 4.0   | 452  | 0.7326          | 0.78     |
| 0.4113        | 5.0   | 565  | 0.9069          | 0.73     |
| 0.0964        | 6.0   | 678  | 0.8265          | 0.82     |
| 0.1707        | 7.0   | 791  | 0.8793          | 0.82     |
| 0.0078        | 8.0   | 904  | 1.2400          | 0.81     |
| 0.0136        | 9.0   | 1017 | 1.1516          | 0.79     |
| 0.0029        | 10.0  | 1130 | 1.5072          | 0.78     |


### Framework versions

- Transformers 4.48.0.dev0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0