--- library_name: transformers license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: apv53-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.78 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # apv53-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 1.5072 - Accuracy: 0.78 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3311 | 1.0 | 113 | 1.2307 | 0.67 | | 0.7706 | 2.0 | 226 | 1.0825 | 0.63 | | 0.7012 | 3.0 | 339 | 0.8888 | 0.75 | | 0.3658 | 4.0 | 452 | 0.7326 | 0.78 | | 0.4113 | 5.0 | 565 | 0.9069 | 0.73 | | 0.0964 | 6.0 | 678 | 0.8265 | 0.82 | | 0.1707 | 7.0 | 791 | 0.8793 | 0.82 | | 0.0078 | 8.0 | 904 | 1.2400 | 0.81 | | 0.0136 | 9.0 | 1017 | 1.1516 | 0.79 | | 0.0029 | 10.0 | 1130 | 1.5072 | 0.78 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0